Issue
Korean Journal of Chemical Engineering,
Vol.26, No.4, 946-954, 2009
A numerical study of the Dufour and Soret effects on unsteady natural convection flow past an isothermal vertical cylinder
The Dufour and Soret effects on the unsteady laminar free convective flow with mass transfer flow past a semi-infinite isothermal vertical cylinder were studied numerically. The governing partial differential equations were converted into a non-dimensional form and solved numerically by applying a Crank-Nicolson type of implicit finitedifference method with a tri-diagonal matrix manipulation and an iterative procedure. For the hydrogen-air mixture, which is a non-chemical reacting fluid, the profiles of the unsteady dimensionless velocity, temperature and concentration are shown graphically for the different values of thermal and mass Grashof numbers, thermal diffusion parameters (Soret numbers) and diffusion-thermo parameters (Dufour numbers). Finally, the simulated values of the average skin-friction coefficient, the average Nusselt number and the average Sherwood number are presented. The numerical results reveal that for an increasing Soret number or decreasing Dufour number, the time to reach the temporal maximum and the steady-state decreases for the flow variables. As the Soret number increases or the Dufour number decreases, both the skin friction and the Sherwood number increase, whereas the Nusselt number decreases.
[References]
  1. Bottemanne FA, Appl. Sci. Res., 25, 372, 1972
  2. Gebhart B, Pera L, Int. J. Heat Mass Trans., 14, 2025, 1971
  3. Chen TS, Yuh CF, Int. J. Heat Mass Trans., 23, 451, 1980
  4. Goldstein RJ, Briggs DG, J. Heat Trans., 86, 490, 1964
  5. Dring RP, Gebhart B, Tran. ASME J. Heat Tran., 88, 246, 1966
  6. Velusamy K, Garg VK, Int. J. Heat Trans., 35, 1293, 1992
  7. Anghel M, Takhar HS, Pop I, Studia Universitatis Babes-Bolyai, Mathematica, XLV, 4, 11, 2000
  8. Dursunkaya Z, Worek WM, Int. J. Heat Mass Trans., 35, 2060, 1992
  9. Eckert ERG, Drake RM, Analysis of heat and mass transfer, McGraw-Hill, New York, 1972
  10. Postelnicu A, Int. J. Heat Mass Transf., 47(6-7), 1467, 2004
  11. Seddeek MA, Acta Mechanica, 172, 83, 2004
  12. Eldabe NT, El-Saka AG, Fouad A, Appl. Math. Comput., 152, 867, 2004
  13. Alam MS, Rahman MM, Nonlinear Analysis: Modelling and Control, 11, 3, 2006
  14. Salem AM, Commun. Numer. Meth. Engng., 22, 955, 2006
  15. Carnahan B, Luther HA, Wilkes JO, Applied numerical methods, John Wiley & Sons, New York, 1969
  16. Ganesan P, Rani HP, Heat Mass Transfer, 33, 449, 1998
  17. Kafoussias NG, Williams EW, Int. J. Engng. Sci., 33, 1369, 1995
  18. Gebhart B, Heat transfer, 2nd ed., McGraw-Hill, New York, 1971