Issue
Korean Journal of Chemical Engineering,
Vol.26, No.2, 554-559, 2009
Kinetic analysis of NO-Char reaction
Two Chinese coals were used to prepare chars in a flat flame flow reactor which can simulate the temperature and gas composition of a real pulverized coal combustion environment. Acid treatment on the YB and SH chars was applied to obtain demineralized chars. Kinetic characterization of NO-char reaction was performed by isothermal thermogravimetry in the temperature range of 973-1,573 K. Presence of catalytic metal matter can increase the reactivity of chars with NO, which indicates that the catalytic effects of inherent mineral matter play a significant role in the NO-char reaction. The discrete random pore model was applied to describe the NO-char reactions and obtain the intrinsic kinetics. The model can predict the data for all the chars at various temperatures well, but underestimate the reaction rates at high carbon conversions for the raw YB and SH chars, which can be attributed to the accumulation of metal catalyst on char surface.
[References]
  1. Kang M, Park JH, Choi JS, Park ED, Yie JE, Korean J. Chem. Eng., 24(1), 191, 2007
  2. Qiu P, Wu S, Sun S, Liu H, Yang L, Wang G, Korean J. Chem. Eng., 24(4), 683, 2007
  3. Li T, Zhuo Y, Lei J, Xu X, Korean J. Chem. Eng., 24(6), 1113, 2007
  4. Zhang Y, Ding Y, Wu Z, Kong L, Chou T, Korean J. Chem. Eng., 24(6), 1118, 2007
  5. Li ZQ, Chen ZC, Sun R, Wu SH, J. Energy Institute, 80, 123, 2007
  6. Li ZQ, Jing JP, Chen ZC, Ren F, Xu B, Wei HD, Ge ZH, Combust. Sci. Technol., 180, 1370, 2008
  7. Cances J, Commandre JM, Salvador S, Dagaut P, Fuel, 87, 274, 2008
  8. Teng H, Suuberg EM, Calo JM, Energy & Fuels, 6, 398, 1992
  9. Li YH, Radovic LR, Lu GQ, Rudolph V, Chem. Eng. Sci., 54(19), 4125, 1999
  10. Wang SB, Slovak V, Haynes BS, Fuel Process. Technol., 86(6), 651, 2005
  11. Lopez D, Calo J, Energy Fuels, 21(4), 1872, 2007
  12. Song YH, Beer JM, Sarofim AF, Combust. Sci. Technol., 25, 237, 1981
  13. Levy JM, Chan LK, Sarofim AF, Beer JM, Eighteenth symposium (international) on combustion, the combustion institute, 111, 1980
  14. Schonenbeck C, Gadiou R, Schwartz D, Fuel, 83, 443, 2004
  15. Aarna I, Suuberg EM, Fuel, 76(6), 475, 1997
  16. Radovic LR, Walker Jr. PL, Jenkins RG, Fuel, 62, 843, 1983
  17. Lizzio AA, Jiang H, Liubisa LR, Carbon, 28, 7, 1990
  18. Zeng D, Clark M, Gunderson T, Hecker WC, Fletcher TH, Proceedings of the combustion institute, 30, 2213, 2005
  19. Fletcher TH, Ma JL, Rigby JR, Brown AL, Webb BW, Prog. Energy Combust. Sci., 23, 293, 1997
  20. Weigand P, Luckerath R, Meier W, Institute of Combustion Technology, www.dlr.de/VT/Datenarchiv
  21. Bale HD, Catlson ML, Schobert HH, Fuel, 65, 1185, 1986
  22. Mahajan OP, Yarzab RY, Walker PL, Fuel, 57, 643, 1978
  23. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160, 1985
  24. Raghunathan K, Yang RYK, Ind. Eng. Chem. Res., 28, 518, 1989
  25. Radovic LR, Jiang H, Lizzio AA, Energy & Fuels, 5, 68, 1991
  26. Ng SH, Fung DP, Kim S, Fuel, 67, 700, 1988
  27. Commandre JM, Stanmore BR, Salvador S, Combust. Flame, 128(3), 211, 2002
  28. Illangomez MJ, Linaressolano A, Radovic LR, Delecea CS, Energy Fuels, 10(1), 158, 1996
  29. Salvador S, Commandre JM, Stanmore BR, Gadiou R, Energy Fuels, 18(2), 296, 2004
  30. Bhatia SK, Perlmutter DD, AIChE J., 26, 379, 1980
  31. Su JL, Perlmutter DD, AIChE J., 31, 973, 1985
  32. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161, 2001
  33. Bhatia SK, Vartak BJ, Carbon, 34, 1383, 1996
  34. Hamilton R, Sams T, Shadman DA, Fuel, 63, 1043, 1984
  35. Struis RPWJ, von Scala C, Stucki S, Prins R, Chem. Eng. Sci., 57(17), 3581, 2002
  36. Struis RPWJ, von Scala C, Stucki S, Prins R, Chem. Eng. Sci., 57(17), 3593, 2002
  37. Moulijin JA, Kapteijin F, Carbon, 33, 1155, 1995