Issue
Korean Journal of Chemical Engineering,
Vol.26, No.2, 422-427, 2009
Optimization of citric acid production by Aspergillus niger NRRL 567 grown in a column bioreactor
Citric acid production using Aspergillus niger NRRL 567 grown on peat moss has been optimized in a column bioreactor using a statistically based method. A 2^(3) full factorial design with eight fermentation conditions was applied to evaluate significance on citric acid production and their interactions between variables, where the three independent variables evaluated were aeration rate, bed depth and temperature. Aeration rate and fermentation temperature were identified to be significant variables. Citric acid production markedly increases with aeration rate and fermentation temperature; however, the bed depth of solid substrate showed an insignificant effect on citric acid production. The optimum fermentation condition for citric acid production in a column bioreactor consisted of aeration rate of 0.84 vvm, bed depth of 22 cm and fermentation temperature of 32 ℃. Under a given condition, a maximum citric acid production of 120.6 g/l was predicted and matched well with the experimental value of 123.9 g/kg.
[References]
  1. Chahal DS, Appl. Environ. Microbiol., Jan., 205 (1985)
  2. Nandakumar MP, Thakur MS, Raghavarao KS, Ghildyal NP, Process Biochem., 29(7), 545, 1994
  3. Ghildyal NP, Gowthaman MK, Rao KS, Karanth NG, Enzyme Microb. Technol., 16(3), 253, 1994
  4. Pintado J, Torrado A, Gonzalez MP, Murado MA, Enzyme Microb. Technol., 23(1-2), 149, 1998
  5. Goes AP, Sheppard JD, J. Chem. Technol. Biotechnol., 73, 709, 1999
  6. Kokitkar PB, Tanner RD, Enz. Microbiol. Technol., 12, 552, 1990
  7. Omori T, Takeshima N, Shimoda M, J. Ferment. Bioeng., 78(1), 27, 1994
  8. Smits JP, Rinzema A, Tramper J, van Sonsbeek HM, Hage JC, Kaynak A, Knol W, Enzyme Microb. Technol., 22(1), 50, 1998
  9. Favela-Torres E, Cordova-Lopez J, Garcia-Rivero M, Gutierrez-Rojas M, Process Biochem., 33(2), 103, 1998
  10. Romero-Gomez SJ, Augur C, Viniegra-Gonzalez G, Biotechnol. Lett., 22(15), 1255, 2000
  11. Wasay SA, Barrington SF, Tokunaga S, Bioremed. J., 2, 184, 1998
  12. Kim JW, Suzelle S, Sheppard J, Lee B, Process Biochem., 41, 1253, 2006
  13. Barrington S, Kim JW, Bioresour. Technol., 99(2), 368, 2008
  14. Xu DB, Kubicek CP, Roch M, Appl. Microbiol. Biotechnol., 30, 444, 1989
  15. Marier JR, Boulet M, J. Dairy Sci., 41, 1683, 1958
  16. Miller GL, Anal. Chem., 31, 426, 1959
  17. Berthouex PM, Brown LC, Statistics for environmental engineers (2nd Ed.), CRC press, Boca Raton, FL (1994)
  18. Panda T, Naidu GSN, Sinha J, Process Biochem., 35(1), 187, 1999
  19. de Medeiros SF, Avery MA, Avery B, Leite SGF, Freitas ACC, Williamson JS, Biotechnol. Lett., 24(11), 937, 2002
  20. Abou-Zeid AA, Ashy MA, Agr. Wasters, 9, 51, 1984
  21. Elliott HA, Shastri NL, Water Air Soil Poll., 110, 335, 1999
  22. Sayer JA, Gadd GM, Mycol. Res., 105, 1261, 2001
  23. Barrington S, Choiniere D, Trigui M, Knight W, Bioresour. Technol., 83(3), 189, 2002