Issue
Korean Journal of Chemical Engineering,
Vol.26, No.2, 411-416, 2009
Continuous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of C/N ratio and dilution rate on HB/HV ratio
Ralstonia eutropha was cultivated in a continuous stirred fermenter with various C/N ratios (20, 30, and 40), dilution rates, and organic salt substrates (sodium propionate or sodium valerate) to explore the microbial growth and the poly(3HB-co-3HV) accumulation. When sodium propionate was used as the secondary carbon source, the HB/HV molar ratio at various C/N ratios and dilution rates did not change appreciably (approximately 90 : 10). The highest poly(3HB-co-3HV) content in biomass (41.8%) and poly(3HB-co-3HV) productivity (0.100 g/(L·h)) occurred under the condition with a C/N ratio of 20 and dilution rate of 0.06 h^(-1). When sodium valerate was used as the secondary carbon source, the productivity of poly(3HB-co-3HV) increased with increasing dilution rate for the C/N ratio of 30 and 40. The average HB/HV molar ratio ranged from 48 : 52 to 78 : 32. The feeding of sodium valerate promoted the accumulation of HV better than feeding sodium propionate did. This study shows that a potential strategy of manipulating by both C/N ratio and dilution rate could be used to control the HV unit fraction in poly(3HB-co-3HV) in a continuous cultivation.
[References]
  1. Anderson AJ, Dawes EA, Microbiol Rev., 54, 450, 1990
  2. Choi J, Lee SY, Appl. Microbiol. Biotechnol., 51(1), 13, 1999
  3. Dai Y, Yuan ZG, Jack K, Keller J, J. Biotechnol., 139, 489, 2007
  4. Kasemsap C, Wantawin C, Bioresour. Technol., 98(5), 1020, 2007
  5. Doi Y, Fukuda K, Biodegradable plastics and polymers, Elsevier, Tokyo, 120-135 (1994)
  6. Du GC, Chen J, Yu J, Lun S, Process Biochem., 37, 219, 2001
  7. Ho IC, Yang SP, Chiu WY, Huang SY, International J. Biological Macromol., 40, 112, 2007
  8. Matsusaki H, Abe H, Doi Y, Biomacromolecules, 1(1), 17, 2000
  9. Ishihara Y, Shimizu H, Shioya S, J. Ferment. Bioeng., 81(5), 422, 1996
  10. Lee IY, Kim MK, Chang HN, Park YH, Biotechnol. Lett., 16(6), 611, 1994
  11. Lee SY, Biotechnol. Bioeng., 49(1), 1, 1996
  12. Yim KS, Lee SY, Chang HN, Korean J. Chem. Eng., 12(2), 264, 1995
  13. Yan Q, Du GC, Chen J, Process Biochem., 39, 387, 2003
  14. Shang LG, Yim SC, Park HG, Chang HN, Biotechnol. Prog., 20(1), 140, 2004
  15. Du GC, Chen J, Yu J, Lun SY, Biochem. Eng. J., 8, 103, 2001
  16. Salehizadeh H, van Loosdrecht MCM, Biotechnol. Adv., 22, 261, 2004
  17. Lee YW, Yoo YJ, Yang JW, Korean J. Chem. Eng., 12(4), 481, 1995
  18. Riis V, Mai W, J. Chromatogr., 445, 285, 1988
  19. Wu ST, Huang CC, Yu ST, Too JR, J. Chin. Inst. Chem. Engrs., 37, 501, 2006
  20. Kim JS, Lee BH, Kim BS, Biochem. Eng. J., 23, 169, 2005
  21. Preusting H, Hazenberg W, Witholt B, Enzyme Microbiol. Technol., 15, 311, 1993
  22. Yu ST, Lin CC, Too JR, Process Biochem., 40, 2729, 2005
  23. Yan Q, Du GC, Chen J, Chin. J. Process Eng., (in Chinese), 2, 483, 2002
  24. Yim KS, Lee SY, Chang HN, Biotechnol. Bioeng., 49(5), 495, 1996
  25. Ruan WQ, Chen J, Lun SY, Process Biochem., 39, 295, 2003
  26. Doi Y, Microbial polyesters, VCH: New York (1990)
  27. Lee EY, Kang SH, Choi CY, J. Ferment. Bioeng., 79(4), 328, 1995