Issue
Korean Journal of Chemical Engineering,
Vol.26, No.2, 364-370, 2009
Optimization of process variables for a biosorption of nickel(II) using response surface method
The biosorption of nickel(II) was studied by using crab shell particles of diameter (dp=0.012 mm) under different initial concentrations of nickel(II) in solution (0.01-5.0 g/l), temperature (20-40 ℃), pH (2-6.5), and biosorbent dosages (0.5-10 g/l). The maximum removal of nickel(II) occurred at pH 6.5 and temperature 40 ℃ for a biosorbent dosage of 6 g/l. The results were modeled by response surface methodology (RSM), which determines the maximum biosorption of nickel(II) as a function of the above four independent variables, and the optimum values for the efficient biosorption of nickel(II) were obtained. The RSM studies were carried out using Box-Behnken design and the analysis of variance confirms the adequacy of the quadratic model with coefficient of correlation R2 to be 0.9999. The quadratic model fitted the data well with Prob>F to be <0.0001, indicating the applicability of the present proposed model.
[References]
  1. Leusch L, Holan ZR, Volesky B, J. Chem. Technol. Biotechnol., 62, 249, 1995
  2. Padmavathy V, Vasudevan P, Dhingra SC, Proc. Biochem., 38, 1389, 2003
  3. Rodriguez CE, Quesada A, Rodriguez E, Braz. J. Microbiol., 37, 465, 2006
  4. Lee MY, Park JM, Yang JW, Process Biochem., 32(8), 671, 1997
  5. Lopez A, Lazaro N, Morales S, Marques AM, Water, Air and Soil Pollution, 135, 157, 2002
  6. Vieira R, Volesky B, Int. Microbiol., 3, 17, 2000
  7. Volesky B, Holan ZR, Biotechnol. Prog., 11(3), 235, 1995
  8. Park JK, Choi SB, Korean J. Chem. Eng., 19(1), 68, 2002
  9. Nomanbhay SM, Palanisamy K, Electronic J. Biotechnol., 8, 43, 2005
  10. Chu KH, Hashim MA, Sep. Sci. Technol., 38(16), 3927, 2003
  11. Pradhan S, Shukla SS, Dorris KL, J. Hazard. Mater., B125, 201, 2005
  12. Snell FD, Snell CT, “Calorimetric methods of analysis including some turbidimetric and nephelometric methods,” New York, Van Nostrand Reinhold Company (1949)
  13. Montgomery DC, Design and analysis of experiments, Wiley, New York (1997)
  14. Sheeja RY, Murugesan T, J. Chem. Technol. Biotechnol., 77(11), 1219, 2002
  15. Sag Y, Sep. Purific. Methods, 30, 1, 2001
  16. Holan ZR, Volesky B, Appl. Biochem. Biotechnol., 53(2), 133, 1995
  17. Vijayaraghavan K, Palanivelu K, Velan M, Bioresour. Technol., 97(12), 1411, 2006
  18. Malkoc E, J. Hazard. Mater., B137, 899, 2006
  19. Ozdemir G, Baysal SH, Appl. Microbiol. Biotechnol., 64(4), 599, 2004
  20. Casas JM, Alvarez F, Cifuentes L, Chem. Eng. Sci., 55(24), 6223, 2000
  21. Tsezos M, Biotechnol. Bioengg., 25, 2025, 1983
  22. Friis N, Myers-Keith P, Biotechnol. Bioengg., 28, 21, 1986
  23. Matheickal JT, Yu Q, Water Res., 33, 335, 1999
  24. Yu Q, Kaewsarn P, Korean J. Chem. Eng., 16(6), 753, 1999
  25. Dambies L, Guimon C, Yiacoumi S, Guibal E, Colloids and Surfaces., A177, 203, 2001
  26. Dursun AY, Biochem. Engg. J, 28, 187, 2006