Issue
Korean Journal of Chemical Engineering,
Vol.25, No.6, 1389-1396, 2008
Preparation, electrochemical properties, and cycle mechanism of Li1-xFe0.8Ni0.2O2-LixMnO2 (Mn/(Fe+Ni+Mn)=0.8) materia
A new type of Li1-xFe0.8Ni0.2O2-LixMnO2 (Mn/(Fe+Ni+Mn)=0.8) material was synthesized at 350 ℃ in an air atmosphere by a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1-xFeO2-LixMnO2 ((Fe+Ni+Mn)=0.8) with much reduced impurity peaks. It was composed of many large particles of about 500-600 nm and small particles of about 100-200 nm, which were distributed among the larger particles. The Li/Li1-xFe0.8Ni0.2O2-LixMnO2 cell showed a high initial discharge capacity above 192 mAh/g, which was higher than that of the parent Li/Li1-xFeO2-LixMnO2 (186 mAh/g). This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles. We suggest a unique role of doped nickel ion in the Li/Li1-xFe0.8Ni0.2O2-LixMnO2 cell, which results in the increased initial discharge capacity from the redox reaction of Ni2+/Ni3+ between 2.0 and 1.5 V region.
[References]
  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB, Mater. Res. Bull., 15, 783, 1980
  2. Rossen E, Reimers JN, Dahn JR, Solid State Ionics, 62, 53, 1993
  3. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H, Electrochim. Acta, 38, 1159, 1993
  4. Jang DH, Shin YJ, Oh SM, J. Electrochem. Soc., 143(7), 2204, 1996
  5. Xia YY, Zhou YH, Yoshio M, J. Electrochem. Soc., 144(8), 2593, 1997
  6. Xia Y, Yoshio M, J. Power Sources, 57, 125, 1995
  7. Kanno R, Shirane T, Kawamoto Y, Takeda Y, Takano M, Ohashi M, Yamaguchi Y, J. Electrochem. Soc., 143(8), 2435, 1996
  8. Shirane T, Kanno R, Kawamoto Y, Takeda Y, Takano M, Kamiyama T, Izumi F, Solid State Ion., 79, 227, 1995
  9. Tabuchi M, Ado K, Sakaebe H, Masquelier C, Kageyama H, Nakamura O, Solid State Ion., 79, 220, 1995
  10. Tabuchi M, Masquelier C, Takeuchi T, Ado K, Matsubara I, Shirane T, Kanno R, Tsutsui S, Nasu S, Sakaebe H, Nakamura O, Solid State Ion., 90(1-4), 129, 1996
  11. Ado K, Tabuchi M, Kobayashi H, Kageyama H, Nakamura O, Inaba Y, Kanno R, Takagi M, Takeda Y, J. Electrochem. Soc., 144(7), L177, 1997
  12. Tabuchi M, Ado K, Kobayashi H, Matsubara I, Kageyama H, Wakita M, Tsutsui S, Nasu S, Takeda Y, Masqulier C, Hirano A, Kanno R, J. Solid State Chem., 141, 554, 1998
  13. Tabuchi M, Tsutsui S, Masquelier C, Kanno R, Ado K, Matsubara I, Nasu S, Kageyama H, J. Solid State Chem., 140, 159, 1998
  14. Sakurai Y, Arai H, Okada S, Yamaki J, J. Power Sources, 68(2), 711, 1997
  15. Sakurai Y, Arai H, Yamaki J, Solid State Ionics, 113-115, 29, 1998
  16. Lee YS, Sato S, Tabuchi M, Yoon CS, Sun YK, Kobayakawa K, Sato Y, Electrochem. Comm., 5, 549, 2003
  17. Lee YS, Sato S, Sun YK, Kobayakawa K, Sato Y, Electrochem. Comm., 5, 359, 2003
  18. Lee YS, Yoon CS, Sun YK, Kobayakawa K, Sato Y, Electrochem. Comm., 4, 727, 2002
  19. Lee YS, Yoshio M, Electrochem. Solid State Lett., 4(10), A166, 2001
  20. Lee YS, Yoon CS, Sun YK, Yoshio M, Electrochem. Solid State Lett., 5(1), A1, 2002
  21. Youn SG, Lee IH, Yoon CS, Kim CK, Sun YK, Lee YS, Yoshio M, J. Power Sources, 108(1-2), 97, 2002
  22. Ito Y, Idemoto Y, Tsunoda Y, Koura N, J. Power Sources, 119, 733, 2003
  23. Ikuta H, Takanaka K, Wakihara M, Electrochim. Acta, 414, 227, 2004
  24. Park SH, Sun YK, Park KS, Nahm KS, Lee YS, Yoshio M, Electrochim. Acta, 47(11), 1721, 2002