Issue
Korean Journal of Chemical Engineering,
Vol.25, No.6, 1286-1291, 2008
Hydrothermal synthesis and characterization of Fe(III)-substituted mordenites
Fe-substituted mordenites were synthesized hydrothermally, partially substituting iron atoms for the framework aluminum of mordenite. XRD, SEM, IR, UV-VIS DRS, ESR, XAS, and catalytic activity studies provided the evidence of Fe^(3+) present in the zeolite framework. The framework IR bands were shifted to lower frequencies as Fe^(3+) ions incorporated into the lattice, and a new Si-O-Fe bond vibration was located near 668 cm.1. The presence of a signal at g=4.3 in the ESR spectra was assigned to Fe^(3+) isomorphously substituted in the tetrahedral position. EXAFS at the Fe K-edge revealed that the Fe^(3+) ions were present in the zeolite framework in a four-fold coordination with an average Fe-O distance of 1.86 A. In the UV-vis spectra, an absorption was observed at 375.7 nm which was assigned to the presence of Fe^(3+) in the zeolite framework. A toluene alkylation study reflected that the acidity strength of mordenite is weakened due to the presence of lattice iron species.
[References]
  1. Dong M, Wang J, Sun Y, Hu T, Liu T, Xie Y, Acta Chim. Sinica, 43, 237, 2001
  2. Chen HY, El-Malki EM, Wang X, van Santen RA, Sachtler WMH, J. Mol. Catal. A-Chem., 162(1-2), 159, 2000
  3. Szostak R, Thomas TL, J. Chem. Soc., Chem. Commun., 113 (1986)
  4. Fejes P, Kiricsi I, Kovacs K, Lazar K, Marsi I, Oszko A, Rockenbauer A, Schay Z, Appl. Catal. A: Gen., 223(1-2), 147, 2002
  5. Testa F, Pasqua L, Crea F, Aiello R, Lazar K, Fejes P, Lentz P, Nagy JB, Microporous and Mesoporous Materials, 57, 57, 2003
  6. Melero JA, Calleja G, Martinez F, Molina R, Lazar K, Microporous and Mesoporous Materials, 74, 11, 2004
  7. Kim GJ, Ahn WS, Korean J. Chem. Eng., 9(2), 60, 1992
  8. Giordano G, Katovic A, Caputo D, Stud. Surf. Sci. Catal., 140, 307, 2001
  9. Mohamed MM, Gomaa NS, El-Moselhy M, Eissa NA, J. Colloid Interface Sci., 259(2), 331, 2003
  10. Kumar R, Ratnasamy P, J. Catal., 121, 89, 1990
  11. Ratnasamy P, Kumar R, Catal. Today, 9, 327, 1991
  12. Lattam K, Round CI, Williams CD, Microporous and Mesoporous Materials, 38, 333, 2000
  13. Umamaheswari V, Bohlmann W, Poppl A, Vinu A, Hartmann M, Microporous and Mesoporous Materials, 89, 47, 2006
  14. Perez-Ramirez J, Groen JC, Bruckner A, Kumar MS, Bentrup U, Debbagh MN, Villaescusa LA, J. Catal., 232(2), 318, 2005
  15. Ristic A, Tusar NN, Vlaic G, Arcon I, Thibault-Starzyk F, Malicki N, Kaucic V, Microporous and Mesoporous Materials, 76, 61, 2004
  16. Ristic A, Tusar NN, Arcon I, Logar NZ, Thibault-Starzyk F, Czyzniewska J, Kaucic V, Chem. Mater., 15, 3643, 2003
  17. Nesterenko NS, Ponomoreva OA, Yuschenko VV, Ivanova II, Testa F, Di Renzo F, Fajula F, Appl. Catal. A: Gen., 254(2), 261, 2003
  18. Zhao W, Kong L, Luo Y, Li Q, Microporous and Mesoporous Materials, 100, 111, 2007
  19. Kumar AS, Perez-Ramirez J, Debbagh MN, Smarsly B, Bentrup U, Bruckner A, Appl. Catal. B: Environ., 62(3-4), 244, 2006
  20. Han Y, Meng X, Guan H, Yu Y, Zhao L, Xu X, Yang X, Wu S, Li N, Xiao FS, Microporous and Mesoporous Materials, 57, 191, 2003
  21. Tusar NN, Logar NZ, Arcon I, Mali G, Mazaj M, Ristic A, Lazar K, Kaucic V, Microporous and Mesoporous Materials, 87, 52
  22. Aiello R, Nagy JB, Giordano G, Katovic A, Testa F, C. R. Chimie, 8, 321, 2005
  23. Demuth T, Hafner J, Benco L, Toulhoat H, J. Phys. Chem. B, 104(19), 4593, 2000
  24. Yuan SP, Wang JG, Li YW, Peng SY, J. Mol. Catal. A-Chem., 175(1-2), 131, 2001
  25. Fejes P, Nagy JB, Halasz J, Oszko A, Appl. Catal. A: Gen., 175(1-2), 89, 1998
  26. Stern EA, Newville M, Ravel B, Yacoby BY, Haskel D, Physica B, 208-209, 117, 1995
  27. Newville M, Livins P, Yacoby Y, Rehr JJ, Stern EA, Phys. Rev. B, 47, 14126, 1993
  28. D'Angelo P, Benfatto M, J. Phys. Chem. A, 108(20), 4505, 2004
  29. Rehr JJ, Albers RC, Zabinsky SI, Phys. Rev. Lett., 69, 3397, 1992
  30. Lee T, Benesch F, Jiang Y, Rose-Petruck CG, Chem. Phys., 299, 233, 2004
  31. Kim GJ, Ahn WS, Zeolites, 11, 745, 1991