Issue
Korean Journal of Chemical Engineering,
Vol.25, No.5, 1184-1189, 2008
Epitaxial growth of GaN on (0001) Al2O3 via solution-cast seed layer formation process using Ga(mDTC)3
This paper reports an alternative method for the growth of GaN epitaxial layer on (0001) Al2O3 substrate by hot-wall vapor phase epitaxy technique. Tris (N,N-dimethyldithiocarbamato)-gallium (III), Ga(mDTC)3 was introduced as a precursor material for the seed layer formation in the growth of GaN. Optimal growth conditions with seed layers formed by the Ga(mDTC)3 concentration of 0.047 mol/L were identified: Growth temperature was found to be 850 ℃, and optimal distance between the reactant outlet and substrate was determined to be 12.5 cm. Characterization results showed that this growth method produce high-crystallinity GaN epitaxial layers at a relatively lower growth temperature compared to the existing growth techniques and simplify the growth process.
[References]
  1. Nakamura S, Senoh M, Nagahama Si, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozak T, Umemoto H, Sano H, Chocho K, Appl. Phys. Lett., 72, 2014, 1998
  2. Morkoc H, Nitride semiconductors and devices, Springer, Heidelberg, 1999
  3. Mohammad SN, Morkoc H, Prog. Quantum Electron, 20, 361, 1996
  4. Morkoc H, Di Carlo A, Cingolani R, in Condensed matter news, edited by Patrick Bernier (in press)
  5. Maruska HP, Tietjen JJ, Appl. Phys. Lett., 15, 327, 1969
  6. Molnar RJ, Goetz W, Romano LT, Johnson NM, J. Cryst. Growth, 178, 147, 1997
  7. Manasevit HM, Erdmann FM, Simpson WI, J. Electrochem. Soc., 118, 1864, 1971
  8. Hashimoto M, Amano H, Sawaki N, Akasaki I, J. Cryst. Growth, 68, 163, 1984
  9. Yoshida S, Misawa S, Itoh A, Appl. Phys. Lett., 26, 461, 1975
  10. Porowsky S, Grezegory I, J. Cryst. Growth, 178, 174, 1997
  11. Kurai S, Naoi Y, Abe T, Ohmi S, Sakai S, Jpn. J. Appl. Phys., 35, L77, 1996
  12. Sato H, Takahashi H, Watanabe A, Ota H, Appl. Phys. Lett., 68, 3617, 1996
  13. Tsuchiya H, Tageuchi A, Kurihara M, Hasegawa F, J. Cryst. Growth, 152, 21, 1995
  14. Lee J, Paek H, Yoo J, Kim G, Kum D, Mat. Sci. Eng., B59, 12, 1999
  15. Tavernier PR, Clarke DR, J. Am. Ceram. Soc., 85(1), 49, 2002
  16. Oshimal Y, Eri T, Shibata M, Sunakawa H, Usui A, Phys. Status Solidi A-Appl. Res., 194, 554, 2002
  17. Able A, Wegscheider W, Engl K, Zweck J, J. Cryst. Growth, 276(3-4), 415, 2005
  18. Paskoval T, Paskov PP, Darakchieva V, Tungasmita S, Birch J, Monemar B, Phys. Status Solidi A-Appl. Res., 183, 197, 2011
  19. Martin D, Napierala J, Ilegems M, Butte M, Grandjean N, Appl. Phys. Lett., 88, 241914, 2006
  20. Kryliouk O, Reed M, Dann T, Anderson T, Chai B, Mater. Sci. Eng., B66, 26, 1999
  21. Jung WS, Ra CS, Min BK, Bull. Korean Chem. Soc., 26, 131, 2005
  22. Park C, Yeo S, Kim JH, Yoon D, Anderson TJ, Thin Solid Films, 498(1-2), 94, 2006
  23. Copel M, Copel MC, Kaxiras E, Tromp RM, Phys. Rev. Lett., 63, 632, 1989