Issue
Korean Journal of Chemical Engineering,
Vol.25, No.5, 1170-1177, 2008
Hydrodynamic characteristics of activated carbon in air- and water-fluidized beds
The hydrodynamic characteristics of small hydrophobic activated carbon particles were determined in air flowing through both fixed and fluidized bed layers and water flowing through an inverse fluidized bed. Based on experimental data the Ergun-equation was corrected. A new relationship is proposed to predict the pressure drop in a fixed bed with gas flowing by using the minimum fluidizing velocity (umf) and particle terminal velocity (ut). Apparent density of oven-dried activated carbon increases with filling the internal pores by water. After the bed density reaches the density of water, the system switches from an inverse fluidized layer into the classical fluidized state. Finally, it has been demonstrated that the Reynolds number (Remf) at umf associated with the original Archimedes number (Ar) for gas-solid fluidized system and the modified Ar numbers characterizing the inverse fluidized beds lie on identical curves.
[References]
  1. Kunii D, Levenspiel O, Fluidization engineering, Wiley, N.Y., 1969
  2. Anderson A, Sundaresan S, Jackson R, J. Fluid Mech., 303, 327, 1955
  3. Cho YJ, Park HY, Kim SW, Kang Y, Kim SD, Ind. Eng. Chem. Res., 41(8), 2058, 2002
  4. Han HD, Lee W, Kim YK, Kwon JL, Choi HS, Kang Y, Kim SD, Korean J. Chem. Eng., 20(1), 163, 2003
  5. Fan LS, Gas-liquid-solid fluidization engineering, Butterworth, Boston, Stoneham, MA, 1989
  6. Lakshmi ACV, Balamurugan M, Balamurugan M, Samuel TN, Velan M, Bioprocess Eng., 22, 461, 2000
  7. Fan LS, Muroyama K, Chern SH, Chem. Eng. J., 24, 143, 1982
  8. Ulaganathan N, Ulaganathan K, Bioprocess Eng., 15, 159, 1995
  9. Bendict RJF, Kumaresan G, Velan M, Bioprocess Eng., 19, 137, 1998
  10. Garside J, Al-Dibouni M, Ind. Eng. Chem. Process Des. Dev., 16, 206, 1997
  11. Lee DH, Korean J. Chem. Eng., 18(3), 347, 2001
  12. Renganathan T, Krishnaiah K, Chem. Eng. Sci., 60(10), 2545, 2005
  13. Kato Y, Ushida K, Kago T, Morooka S, Powder Technol., 28, 173, 1981
  14. Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971, 1997
  15. Lee D, Macchi A, Grace JR, Epstein N, Chem. Eng. Sci., 56(21-22), 6031, 2001
  16. Nemeth J, Virag T, Acta Chimica Hungarica, 115, 273, 1984
  17. Lewis EW, Bowerman EW, Chem. Eng. Prog., 48, 63, 1952
  18. Nemeth J, Imre L, Design of drying by adsorption, (in Hungarian), in “Handbook of Drying,” Chapter 14, Muszaki KK., Budapest, 1974
  19. Ormos Z, Hung. J. Ind. Chem., 1, 31, 1973
  20. Richardson JF, Zaki WN, Trans. Inst. Chem. Engrs., 32, 35, 1954
  21. Ergun S, Orning AA, Ind. Eng. Chem., 41, 1179, 1949
  22. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  23. Karamanev DG, Nikolov N, AIChE J., 38, 1916, 1992
  24. Richardson JF, Transient fluidization and particulate systems, in “Fluidization,” J. F. Davidson and D. Harrison, Eds., Academic Press N.Y., p. 39, 1971
  25. Blickle T, Nemeth J, Acta Chimica Hungarica, 67, 113, 1971
  26. Wilhelm RH, Kwauk M, Chem. Eng. Prog., 44, 201, 1948
  27. Gelperin NI, Ainstein VG, Kvasha VB, Basics of fluidization techniques, (in Russian), Chemistry, Moskow, p. 84 (1967). “Chemists’ Handbook,” Ed.: Nikolsky, B.P. (in Russian), Chemistry, Moskow, 1966
  28. Renganathan T, Krishnaiah K, Can. J. Chem. Eng., 81(3-4), 853, 2003
  29. Todes OM, Todes OB, Vessels containing fluidized layers (in Russian), Chemistry, Leningrad, 1981
  30. Leva M, Fluidization, McGraw-Hill Co., N.Y., p. 64, 1959
  31. Beranek J, Sokol D, Winterstein G, Wirbelschichttechnik (in German), Leipzig, 1964