Issue
Korean Journal of Chemical Engineering,
Vol.25, No.5, 1065-1069, 2008
A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris
Based on the fact that Pichia cell growth follows a Monod equation under the condition of methanol concentration limitation, a kinetics model of recombinant methylotrophic yeast Pichia pastoris expressing porcine insulin precursor (PIP) was developed in the quasi-steady state in the induction phase. The model revealed that the relationship between specific growth rate (μ) and substrate methanol concentration was in accord with the Monod equation. The fermentation kinetic parameters maximum specific growth rate (μmax), saturation constant (Ks) and maintenance coefficient (M) were estimated to be 0.101 h.1, 0.252 g l.1, and 0.011 g MeOH g.1 DCW h.1, respectively. The unstructured model was validated in methanol induction phase with different initial cell densities. Results showed that the maximum specific protein production rate (qp.max) of 0.098 mg g.1 DCW h.1 was achieved when μ was kept at 0.016 h.1, and the maximum yield of PIP reached 0.97 g l.1, which was 1.5-fold as that of the control. Therefore, the simple Monod model proposed has proven to be a robust control system for recombinant porcine insulin precursor production by P. pastoris on pilot scale, which would be further applied on production scale.
[References]
  1. Frank BH, Pettee JM, Zimmermann RE, Burck PJ, in Proceedings of the seventh American peptide symposium, D. H. Rich and E. Gross, Eds., Pierce Chemical Co., Rockford, IL, 1981
  2. Shin CS, Hong MS, Bae CS, Lee J, Biotechnol. Prog., 13(3), 249, 1997
  3. Markussen J, Damgaard U, Diers I, Fiil N, Hansen MT, Lassen P, Norris F, Norris K, Schou O, Snel L, Thim L, Voigt HO, Diabetologia, 29, 568A, 1986
  4. Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fill NP, Proc. Natl. Acad. Sci. USA, 83, 6766, 1986
  5. Wang Y, Liang ZH, Zhang YS, Yao SY, Xu YG, Tang YH, Zhu SQ, Cui DF, Feng YM, Biotechnol. Bioeng., 73(1), 74, 2001
  6. Cha HJ, Kim KR, Hwang BH, Ahn DH, Yoo YJ, Korean J. Chem. Eng., 24(5), 812, 2007
  7. Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45, 2000
  8. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast, 22, 249, 2005
  9. Cos O, Ramon R, Montesinos JL, Vallero F, Biotechnol. Bioeng., 95(1), 145, 2006
  10. Stratton J, Chiruvolu V, Meagher M, in Pichia protocols, D. R. Higgins and J. M. Cregg, Eds., Human Press, Totowa, New Jersey, 1998
  11. Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA, Gene, 190, 55, 1997
  12. Mattanovich D, Gasser B, Hohenblum H, Sauer M, J. Biotechnol., 113, 121, 2004
  13. Zhang WH, Bevins MA, Plantz BA, Smith LA, Meagher MM, Biotechnol. Bioeng., 70(1), 1, 2000
  14. Li ZJ, Zhao QH, Liang H, Jiang SL, Chen T, Grella D, Shearon C, Bottaro DP, Sim BKL, Biotechnol. Lett., 24(19), 1631, 2002
  15. Zhou XS, Zhang YX, Biotechnol. Lett., 24(17), 1449, 2002
  16. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K, J. Biosci. Bioeng., 90(3), 280, 2000
  17. Curvers S, Brixius P, Klauser T, Thommes J, Weuster-Botz D, Takors R, Wandrey C, Biotechnol. Prog., 17(3), 495, 2001
  18. Ren HT, Yuan JQ, Bellgardt KH, J. Biotechnol., 106, 53, 2003
  19. Curvers S, Linneman J, Klauser T, Wandrey C, Takors R, Chemie Ingenieur Technik, 73, 1615, 2001
  20. Guo M, Chu J, Zhang S, Acta Microbiol. Sinica., 41, 617, 2001
  21. Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F, J. Biotechnol., 116, 321, 2005
  22. Kang HA, Choi ES, Hong WK, Kim JY, Ko SM, Sohn JH, Rhee SK, Appl. Microbiol. Biotechnol., 53(5), 575, 2000
  23. Pais JM, Varas L, Valdes J, Cabello C, Rodriguez L, Mansur M, Biotechnol. Lett., 25(3), 251, 2003
  24. d'Anjou MC, Daugulis AJ, Biotechnol. Bioeng., 72(1), 1, 2001
  25. Mergler M, Klinner U, Acta Biol. Hung., 52, 265, 2001