Issue
Korean Journal of Chemical Engineering,
Vol.25, No.5, 1026-1030, 2008
Formic acid oxidation by carbon-supported palladium catalysts in direct formic acid fuel cell
The oxidation of formic acid by the palladium catalysts supported on carbon with high surface area was investigated. Pd/C catalysts were prepared by using the impregnation method. 30 wt% and 50 wt% Pd/C catalysts had a high BET surface area of 123.7 m2/g and 89.9 m2/g, respectively. The fuel cell performance was investigated by changing various parameters such as anode catalyst types, oxidation gases and operating temperature. Pd/C anode catalysts had a significant effect on the direct formic acid fuel cell (DFAFC) performance. DFAFC with Pd/C anode catalyst showed high open circuit potential (OCP) of about 0.84 V and high power density at room temperature. The fuel cell with 50 wt% Pd/C anode catalyst using air as an oxidant showed the maximum power density of 99 mW/cm2. On the other hand, a fuel cell with 50 wt% Pd/C anode catalyst using oxygen as an oxidant showed a maximum power density of 163 mW/cm2 and the maximum current density of 590 mA/cm2 at 60 ℃.
[References]
  1. Ha S, Adams B, Masel RI, J. Power Sources, 128(2), 119, 2004
  2. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83, 2002
  3. Kim JS, Yu JK, Lee HS, Kim JY, Kim YC, Han JH, Oh IH, Rhee YW, Korean J. Chem. Eng., 22(5), 661, 2005
  4. Sauk J, Byun J, Kang Y, Kim H, Korean J. Chem. Eng., 22(4), 605, 2005
  5. Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35, 2003
  6. Jiang J, Kucernak A, J. Electroanal. Chem., 520(1-2), 64, 2002
  7. Park S, Xie Y, Weaver MJ, Langmuir, 18(15), 5792, 2002
  8. Lovic JD, Tripkovic AV, Gojkovic SLJ, Popovic KD, Tripkovic DV, Olszewski P, Kowal A, J. Electroanal. Chem., 581(2), 294, 2005
  9. Capon D, Parsons R, J. Electroanal. Chem., 65, 285, 1975
  10. Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM, Phys. Chem. Chem. Phys., 5, 4242, 2003
  11. Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28, 2005
  12. Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX, J. Power Sources, 161(2), 831, 2006
  13. Ahmadi TS, Wang ZL, Green TC, Henglein A, Elsayed MA, Science, 272(5270), 1924, 1996
  14. Liu ZL, Lee JY, Han M, Chen WX, Gan LM, J. Mater. Chem., 12, 2453, 2002
  15. Okitsu K, Yue A, Tanabe S, Matsumoto H, Chem. Mater., 12, 3006, 2002
  16. Fujimoto T, Teraushi S, Umehara H, Kojima I, Chem. Mater., 13, 1057, 2001
  17. Yu WY, Tu WX, Liu HF, Langmuir, 15(1), 6, 1999
  18. Baghurst DR, Chippindale AM, Mingos DMP, Nature, 332, 311, 1988
  19. Komarneni S, Li DS, Newalkar B, Katsuki H, Bhalla AS, Langmuir, 18(15), 5959, 2002
  20. Chen WX, Lee JY, Liu ZL, Chem. Commun., 2588, 2002
  21. Larsen R, Ha S, Zakzeski J, Masel RI, J. Power Sources, 157(1), 78, 2006
  22. Yu JK, Lee HS, Kim KH, Kim YC, Han JH, Oh IH, Rhee YW, Korean Chem. Eng. Res., 44(3), 314, 2006
  23. Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8, 2004
  24. Zhang XL, Hayward DO, Mingos DMP, Ind. Eng. Chem. Res., 40(13), 2810, 2001