Issue
Korean Journal of Chemical Engineering,
Vol.25, No.4, 838-845, 2008
Formation of deagglomerated PLGA particles and PLGA-coated ultra fine powders by rapid expansion of supercritical solution with ethanol cosolvent
Rapid expansion of supercritical solution (RESS) was used for preparing polymer particles and polymer coating of ultra fine powders. The polymer of pharmaceutical interest was Poly(lactic-co-glycolic acid) (PLGA with PLA : PGA ratio of 85 : 15 and MW of 50,000-75,000) and the simulated core particles were 1.4-μm SiO2 and 70-nm TiO2 particles. The supercritical solution was prepared by dissolving PLGA in supercritical carbon dioxide with ethanol as a cosolvent. Supercritical solution of CO2-PLGA was sprayed through capillary nozzles to ambient conditions, resulting in formation of submicron PLGA particles. Similarly, rapid expansion of supercritical solution of CO2-PLGA suspended with the core particles could provide solvent evaporation and deposition of submicron PLGA particles on the surface of the core particles, resulting in the formation of coating films on dispersed particles of SiO2 and agglomerates of TiO2. The influences of the core particle size, spray nozzle diameter as well as powder-to-polymer weight ratio were also investigated and discussed with respect to the coating performance.
[References]
  1. Jono K, Ichikawa H, Miyamoto M, Fukumori Y, Powder Technol., 113(3), 269, 2000
  2. Geldart D, Powder Technol., 7, 285, 1973
  3. Fu K, Griebenow K, Hsieh L, Klibanov AM, Langer R, J. Control. Release, 58, 357, 1999
  4. Wang JJ, Chua KM, Wang CH, J. Colloid Interface Sci., 271(1), 92, 2004
  5. Jung J, Perrut M, J. Supercrit. Fluids, 20(3), 179, 2001
  6. Mishima K, Matsuyama K, Tanabe D, Yamauchi S, Young TJ, Johnston KP, AIChE J., 46(4), 857, 2000
  7. Ribeiro Dos Santos I, Richard J, Pech B, Thies C, Benoit JP, Int. J. Pharm., 242, 69, 2002
  8. Tsutsumi A, Ikeda M, Chen W, Iwatsuki J, Powder Technol., 138(2-3), 211, 2003
  9. Wang YL, Dave RN, Pfeffer R, J. Supercrit. Fluids, 28(1), 85, 2004
  10. TOM JW, DEBENEDETTI PG, JEROME R, J. Supercrit. Fluids, 7(1), 9, 1994
  11. Yeo SD, Lim PG, Lee GB, Debenedetti H, Biotechnol. Bioeng., 41, 341, 1993
  12. Debenedetti PG, Lim GB, Prud’Homme RK, European Patent EP 0 542 314, 1992
  13. Choi YH, Kim J, Noh MJ, Park EM, Yoo KP, Korean J. Chem. Eng., 13(2), 216, 1996
  14. Li G, Chu J, Song ES, Row KH, Lee KH, Lee YW, Korean J. Chem. Eng., 23(3), 482, 2006
  15. Hanna M, York P, Patent WO 95/01221, 1994
  16. Noh MJ, Kim TG, Hong IK, Yoo KP, Korean J. Chem. Eng., 12(1), 48, 1995
  17. Zhong MH, Han BX, Yan HK, J. Supercrit. Fluids, 10(2), 113, 1997
  18. Guan B, Liu ZM, Han BX, Yan HK, J. Supercrit. Fluids, 14(3), 213, 1999
  19. Li QS, Zhang ZT, Zhong CL, Liu YC, Zhou QR, Fluid Phase Equilib., 207(1-2), 183, 2003
  20. Chafer A, Fornari T, Berna A, Stateva RP, J. Supercrit. Fluids, 32(1-3), 89, 2004
  21. Jennings DW, Lee RJ, Teja AS, J. Chem. Eng. Data, 36, 303, 1991
  22. Susuki T, Tsuge N, Nakahama K, Fluid Phase Equilib., 67, 213, 1991
  23. Day CY, Chang CJ, Chen CY, J. Chem. Eng. Data, 41, 839, 1996
  24. Patel NC, Teja AS, Chem. Eng. Sci., 37, 463, 1982
  25. Gros HP, Bottini SB, Brignole EA, Fluid Phase Equilib., 139(1-2), 75, 1997
  26. Dixon DJ, Johnston KP, Bodmeier RA, AIChE J., 39, 127, 1993
  27. Mohamed RS, Halverson DS, Debenedetti PG, Prud’homme RK, ACS Symp. Series, 406, 355, 1989
  28. Debenedetti PG, Metastable liquids: Concepts and principles, Princeton University Press, New Jersy, 1996
  29. Giulietti M, Seckler MM, Derenzo S, Re MI, Cekinski E, Braz. J. Chem. Eng., 18, 423, 2001
  30. Sun XY, Wang TJ, Wang ZW, Jin Y, J. Supercrit. Fluids, 24(3), 231, 2002
  31. Sun XY, Wang TJ, Wang ZW, Jin Y, J. Supercrit. Fluids, 24(3), 231, 2002
  32. Smith RD, Fulton JL, Petersen RC, Kopriva AJ, Wright BW, Anal. Chem., 58, 2057, 1986