Issue
Korean Journal of Chemical Engineering,
Vol.25, No.4, 819-824, 2008
Mass transfer of carbon dioxide in aqueous colloidal silica solution containing N-methyldiethanolamine
The absorption rate (RA) of carbon dioxide was measured into an aqueous nanometer sized colloidal silica solution of 0-31 wt% and N-methyldiethanolamine of 0-2 kmol/m3 in a flat-stirred vessel for the various sizes and speeds of at 25 oC and 0.101 MPa to obtain the volumetric liquid-side mass transfer coefficient (kLa) of CO2. The film theory accompanied by chemical reaction between CO2 and N-methyldiethanolamine was used to estimate the theoretical value of absorption rate of CO2. An empirical correlation formula containing the relationship between kLa and rheological property of the aqueous colloidal silica solution was presented. The value of RA in the aqueous colloidal silica solution was decreased by the reduction of kLa due to elasticity of the solution.
[References]
  1. Astarita G, Savage DW, Bisio A, Gas treatment with chemical solvents, John Wiley & Sons, New York, 1983
  2. Fan JM, Cui Z, Ind. Eng. Chem. Res., 44(17), 7010, 2005
  3. Xu DM, Bai YF, Fu LZ, Guo JJ, Int. J. Heat Mass Transf., 48(11), 2219, 2005
  4. Hozawa M, Inoue M, Sato J, Tsukada T, J. Chem. Eng. Jpn., 24, 209, 1991
  5. Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Int. J. Heat Mass Transf., 45(4), 855, 2002
  6. Kim JK, Jung JY, Kang YT, Int. J. Refrig., 29, 22, 2006
  7. Kars RL, Best RJ, Chem. Eng. Sci., 17, 201, 1979
  8. Hikita H, Ishimi K, Ueda K, Koroyasu S, Ind. Eng. Chem. Process Des. Dev., 24, 261, 1985
  9. Zhou M, Cai WF, Xu CJ, Korean J. Chem. Eng., 20(2), 347, 2003
  10. Mehra A, Chem. Eng. Sci., 51(3), 461, 1996
  11. Astarita G, Greco GL, Nicodemo LA, AIChE J., 15, 564, 1969
  12. Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19(1), 190, 1980
  13. Park SW, Sohn IJ, Park DW, Oh KJ, Sep. Sci. Technol., 38(6), 1361, 2003
  14. Park SW, Kim TY, Choi BS, Lee JW, Korea-Aust. Rheol. J., 16(1), 35, 2004
  15. Park SW, Choi BS, Lee BD, Park DW, Kim SS, J. Ind. Eng. Chem., 10(6), 1033, 2004
  16. Park SW, Choi BS, Kim SS, Lee JW, Korean J. Chem. Eng., 21(6), 1205, 2004
  17. Park SW, Choi BS, Lee JW, Korea-Aust. Rheol. J., 17(4), 199, 2005
  18. Park SW, Choi BS, Lee JW, Korea-Aust. Rheol. J., 18(3), 133, 2006
  19. Park SW, Choi BS, Kim SS, J. Ind. Eng. Chem., 12(2), 199, 2006
  20. Ko JJ, Li MH, Chem. Sci. Eng., 55, 4139, 2000
  21. Kennard ML, Meisen A, J. Chem. Eng. Data, 29, 309, 1984
  22. Cussler EL, Diffusion, Cambridge University Press, New York, 1984
  23. Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng. Sci., 10, 88, 1959
  24. Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 11, 131, 1976
  25. Metzner AB, Otter RE, AIChE J., 3, 3, 1957
  26. Seyer FA, Metzner AB, AIChE J., 15, 426, 1969
  27. Yagi H, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 14(4), 488, 1975
  28. Ranade VR, Ulbrecht JJ, AIChE J., 24(5), 796, 1978