Issue
Korean Journal of Chemical Engineering,
Vol.25, No.4, 732-737, 2008
Sulfonated poly(arylene ether sulfone) membranes based on biphenol for direct methanol fuel cells
A series of sulfonated poly(arylene ether sulfone) (PAES) were synthesized through direct aromatic nucleophilic substitution polycondensation of 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (SDCDPS), 4,4-dichlorodiphenylsulfone (DCDPS) and 4,4-biphenol (BP). With increasing sulfonate groups in the polymer, water uptake, ion exchange capacity (IEC) and proton conductivities increased, resulting from enhanced membrane hydrophilicity. The membranes exhibited higher thermal stability up to 300 ℃, verified by thermogravimetric analysis (TGA). A maximum proton conductivity of 0.11 S/cm at 50 mol% of sulfonation degree was measured at 30 ℃, which is slightly higher than Nafion®117 membrane (0.0908 S/cm). However, the methanol permeability of the PAES membrane was much lower than that of Nafion®117 membrane. As a result, a single cell performance test demonstrated that PAES-BP with 50 mol% sulfonation degree exhibited higher power density than Nafion®117.
[References]
  1. Karl K, Guenter S, Schnurnberger W, Chem. Ing. Tech., 69(6), 852, 1996
  2. Arico AS, Srinivasan S, Antonucci V, Williams MC, Fuel Cells, 1(2), 87, 2001
  3. McGrath KM, Surya Prakash GK, Olah GA, J. Ind. Eng. Chem., 10(7), 1063, 2004
  4. Park KW, Sung YE, J. Ind. Eng. Chem., 12(2), 165, 2006
  5. Pak C, Lee SJ, Lee SA, Chang H, Korean J. Chem. Eng., 22(2), 214, 2005
  6. Lee S, Kim D, Lee J, Chung ST, Ha HY, Korean J. Chem. Eng., 22(3), 406, 2005
  7. Ma CS, Zhang L, Mukerjee S, Ofer D, Nair BD, J. Membr. Sci., 219(1-2), 123, 2003
  8. Kauranen PS, Skou E, J. Appl. Electrochem., 26(9), 909, 1996
  9. Jia NY, Lefebvre MC, Halfyard J, Qi ZG, Pickup PG, Electrochem. Solid State Lett., 3(12), 529, 2000
  10. Samms SR, Wasmus S, Savinell RF, J. Electrochem. Soc., 143(5), 1498, 1996
  11. Noshay A, Robeson LM, J. Appl. Polym. Sci., 20(7), 10885, 1976
  12. Ueda M, Toyota H, Ochi T, Sugiyama J, Yonetaka K, Masuko T, Teramoto T, J. Polym. Sci. A: Polym. Chem., 31(4), 853, 2003
  13. Wang F, Ji Q, Harrison W, Mecham J, Formato R, Kovar R, Osenar P, American Chem. Soc., Polymer Preprints, Division of Polymer Chemistry, 41(1), 237, 2000
  14. Kim YS, Sumner MJ, Harrison WL, Riffle JS, McGrath JE, Pivovar BS, J. Electrochem. Soc., 151(12), A2150, 2004
  15. Kim HJ, Krishnan NN, Lee SY, Hwang SY, Kim D, Jeong KJ, Lee JK, Cho E, Lee J, Han J, Ha HY, Lim TH, J. Power Sources, 160(1), 353, 2006
  16. Einsla BR, Kim YS, Hickner MA, Hong YT, Hill ML, Pivovar BS, McGrath JE, J. Membr. Sci., 255(1-2), 141, 2005
  17. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE, J. Membr. Sci., 197(1-2), 231, 2002
  18. Woo Y, Oh SY, Kang YS, Jung B, J. Membr. Sci., 220(1-2), 31, 2003
  19. Cahan BD, Wainright JS, J. Electrochem. Soc., 140, 185, 1993
  20. Pivovar BS, Wang YX, Cussler EL, J. Membr. Sci., 154(2), 155, 1999
  21. Wang F, Chen T, Xu J, Macromol. Chem. Phys., 199(7), 1421, 1998
  22. Wang F, Li JK, Chen TL, Xu JP, Polymer, 40(3), 795, 1999
  23. Wang F, Qi Y, Chen T, Xing Y, Lin Y, Xu J, Crystal Structure Communications, C55(6), 871, 1999
  24. Sakurai K, Douglas EP, MacKnight WJ, Macromolecules, 26(1), 208, 1993
  25. Xue YP, Hara M, Macromolecules, 30(13), 3803, 1997
  26. Miyatake K, Iyotani H, Yamamoto K, Tsuchida E, Macromolecules, 29(21), 6969, 1996
  27. Gieke TD, Munn GE, Wilson FC, J. Polym. Sci. B: Polym. Phys., 19, 1687, 1981