Issue
Korean Journal of Chemical Engineering,
Vol.25, No.2, 323-328, 2008
Melting treatment of waste asbestos using mixture of hydrogen and oxygen produced from water electrolysis
In this study, we melted four types of waste asbestos containing material such as spread asbestos, plasterboard asbestos, slate asbestos and asbestos 99 wt%, in a melting furnace at 1,450-1,550 that uses a mixture of hydrogen and oxygen (Brown’s gas) as a fuel. More volatile components (CaO, K2O) are enriched in spread asbestos, plasterboard asbestos, and slate asbestos, while less volatile compounds (SiO2, Fe2O3, MgO) remain in asbestos 99%. Through basicity of raw materials, spread asbestos, plasterboard asbestos, and slate asbestos were found to have more alkalinity, and asbestos 99% was found more acidic. SEM and EDX results revealed that all raw materials had various kinds of asbestos fiber. Spread asbestos, plasterboard asbestos, and slate asbestos were considered as tremolite asbestos, whereas asbestos 99% was considered as chrysotile asbestos. It was further confirmed by SEM and XRD studies that all waste materials contained some crystalline structures which transformed into amorphous glassy structure on melting. Also, in case of added glass cullet during the melting of spread asbestos, it transformed the raw material into a perfect vitrified product having more glassy surface and amorphous in nature.
[References]
  1. Thompson SK, Mason E, Chemical Health and Safety, 9, 21, 2002
  2. Tylee BE, Davies LST, Addison J, Annals Occup. Hygiene, 40, 711, 1996
  3. Kinnula VL, Pathophysiology, 5, 107, 1998
  4. Bonneau L, Suquet H, Malard C, Pezerat H, Environ. Res., 41, 251, 1986
  5. Chromy W, Naumann J, Bandmann M, Tunnelling Underground Space Technol., 21, 279, 2006
  6. Szweda R, Sealing Technol., 2001, 6, 2001
  7. Feric T, Krstulovic R, Peric J, Krolo P, Cement Concrete Comp., 19, 301, 1997
  8. Feric T, Krstulovic R, Krolo P, Toncic D, Hemijska Industrija, 39, 118, 1985
  9. Rudd R, Medicine, 32, 111, 2004
  10. Liu Y, Zhang P, Yi F, Lung Cancer, 32, 113, 2001
  11. Liddell D, Annals Occup. Hygiene, 45, 329, 2001
  12. Browne K, Annals Occup. Hygiene, 45, 327, 2001
  13. Liddell FDK, Annals Occup. Hygiene, 45, 341, 2001
  14. Tiitola M, Kivisaari L, Huuskonen MS, Mattson K, Koskinen H, Lehtola H, Zitting A, Vehmas T, Lung Cancer, 35, 17, 2002
  15. Manning CB, Vallyathan V, Mossman BT, Int. Immunopharmacology, 2, 191, 2002
  16. Attanoos RL, Gibbs AR, Current Diagnostic Pathology, 8, 373, 2002
  17. Cappelletto F, Merler E, Social Science Medicine, 56, 1047, 2003
  18. Erdinc M, Erdinc E, Cok G, Polatli M, Environ. Res., 91, 151, 2003
  19. Klerk NHD, Musk AW, Pang SC, Lung HG, Lung Cancer, 18, 236, 1997
  20. Kiritani EW, Medical Hypotheses, 33, 159, 1990
  21. Harris LV, Kahwa IA, Sci. Total Environ., 307, 1, 2003
  22. Watts J, The Lancet, 360, 1230, 2002
  23. Budgen A, Lung Cancer, 45, 577, 2004
  24. Brown Y, US Patent, 4,014,777, 1977
  25. Brown Y, US Patent, 4,081,656, 1978
  26. Oh HKJ, Mater. Process. Technol., 95, 8, 1999
  27. Han JH, Kim KJ, Chung YH, Lee JY, Lee YM, Jung HK, Yu IJJ, Korea Soc. Occup. Environ. Hygiene, 11, 102, 2001
  28. Onal Y, Yakinci E, Seckin T, Icduygu MG, Colloids Surf. A: Physicochem. Eng. Asp., 255, 27, 2005
  29. Li CT, Huang YJ, Huang KL, Lee WJ, Ind. Eng. Chem. Res., 42(11), 2306, 2003
  30. Park YJ, Heo JJ, Hazard. Mater., 91, 83, 2002
  31. Barbieri L, Bonamartini AC, Lancellotti IJ, European Ceramic Soc., 20, 2477, 2000
  32. Park K, Hyun JS, Maken S, Jang S, Park JW, Energy Fuels, 19, 258, 2005
  33. Maken S, Hyun JS, Park JW, Song HC, Lee S, Chang EH, J. Sci. Ind. Res., 64, 198, 2005
  34. Hyun JS, Park JW, Maken S, Park JJ, J. Ind. Eng. Chem., 10(3), 361, 2004
  35. Kwak TH, Lee S, Park JW, Maken S, Yoo YD, Lee SH, Korean J. Chem. Eng., 23(6), 954, 2006
  36. Kwak TH, Maken S, Lee S, Min BR, Park JW, Yoo YD, Fuel, 85, 2012, 2006
  37. Barbieri L, Corradi A, Lancellotti IJ, Eur. Ceramic Soc., 20, 1637, 2000
  38. Haugsten KE, Gustavson B, Waste Manage., 20, 167, 2000