Issue
Korean Journal of Chemical Engineering,
Vol.25, No.1, 144-148, 2008
Optimization of synthesizing leucine-binding nano-sized magnetite by a two-step transformation
The optimum conditions for synthesizing leucine (Leu)-binding nano-sized magnetite (NSM) particles by a two-step transformation (TST) process were studied. The formation and magnetization of as-synthesized NSM particles were investigated through variation of the acidity, the type of surface modifier, and the nature of the acid for pH adjustment. With increased acidity, the saturation magnetization of the NSM particles decreased, but the amount of Leu coated on the surface of NSM particles increased. After the influence of hydroxyl (OH.) groups on the surface of NSM particles was removed by using the dicarboxyl anion (C2O42.) as a ligand in the first step, Leu was successfully bound with NSM particles in the second step. However, when polyethylene glycol (PEG) was used as a surface modifier, it was difficult to form the Leu-to-NSM particle complex. In terms of the acid used to modify pH, H2SO4 was slightly less effective than HCl in achieving saturation magnetization because the coordination for SO42. anions is stronger than that of Cl. anions. The preparation of other amino acid-binding NSM particles can be optimized in an analogous manner.
[References]
  1. Tie SL, Lin YQ, Lee HC, Bae YS, Lee CH, Colloids Surf. A: Physicochem. Eng. Asp., 273, 75, 2006
  2. Tie SL, Lee HC, Bae YS, Kim MB, Lee K, Lee CH, Colloids Surf. A: Physicochem. Eng. Asp., 293, 278, 2007
  3. Berry CC, Curtis ASG, J. Phys. D-Appl. Phys., 36, R198, 2003
  4. Arakaki A, Webb J, Matsunaga T, J. Biol. Chem., 278, 8745, 2003
  5. Liu XY, Ding XB, Zheng ZH, Peng YX, Chan ASC, Yip CW, Long XP, Polym. Int., 52, 235, 2003
  6. Yoza B, Arakaki A, Matsunaga T, J. Biotechnol., 101, 219, 2003
  7. Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T, J. Biosci. Bioeng., 95, 21, 2003
  8. Rousseau V, Pouliquen D, Darcel F, Jallet P, Jeune JJL, Magn. Reson. Mater. Bio. Phys. Med., 6, 13, 1998
  9. Wilson KS, Harris LA, Goff JD, Riffle JS, Dailey JP, European Cells and Materials, 3, 206, 2002
  10. Igartua M, Saulnier P, Heurtault B, Pech B, Proust JE, Pedraz JL, Benoit JP, Int. J. Pharm., 233, 149, 2002
  11. Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R, J. Magn. Magn. Mater., 225, 118, 2001
  12. Gravinaa PP, Santosa JS, Figueiredoa LC, Netoa KS, Silvaa MFD, Buskec N, Gansauc C, Moraisa PC, J. Magn. Magn. Mater., 252, 393, 2002
  13. Tallberg T, J. Aust. Coll. Nutr. Environ. Med., 22, 3, 2003
  14. Ventrucci1 G, de Mello MAR, Cristina M, Gomes-Marcondes C, BMC Cancer, 2, 7, 2002
  15. Evoy D, Lieberman M, Fahey TJ, Daly JM, Nutrition, 14, 611, 1998
  16. Ramirez LP, Landfester K, Macromol. Chem. Phys., 204, 22, 2003
  17. Bica D, Vekas L, Rasa M, J. Magn. Magn. Mater., 252, 10, 2002
  18. Liu XY, Ding XB, Zheng ZH, Peng YX, Chan ASC, Yip CW, Long XP, Polym. Int., 52, 235, 2003
  19. Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N, Colloids Surf. A: Physicochem. Eng. Asp., 212, 219, 2003
  20. Deng JG, Ding XB, Zhang WC, Peng YX, Wang JH, Long XP, Li P, Chan ASC, Polymer, 43(8), 2179, 2002
  21. Morais PC, da Silva SW, Soler MAG, Buske N, Biomol. Eng., 17, 49, 2001
  22. Sousa MH, Tourinho FA, Rubim JC, J. Raman Spectrosc., 31, 185, 2000
  23. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G, Langmuir, 17(25), 7907, 2001
  24. Hou Y, Yu J, Gao S, J. Mater. Chem., 13, 1983, 2003
  25. Kazuo, in Nakamoto. Infrared and raman spectra of inorganic and coordination compounds, 232, 245, 477, 478, Wiley-Interscience Publication, 1986
  26. Nelson DL, Cox MM, in Principles of biochemistry, in Principles of biochemistry,, 118, 2000
  27. Nara M, Torii H, Tasumi M, J. Phys. Chem., 100(51), 19812, 1996