Issue
Korean Journal of Chemical Engineering,
Vol.25, No.1, 64-72, 2008
A review on UV/TiO2 photocatalytic oxidation process
Advanced oxidation processes (AOPs) with UV irradiation and photocatalyst titanium dioxide (TiO2) are gaining growing acceptance as an effective wastewater treatment method. A comprehensive review of the UV-TiO2 photocatalytic oxidation process was conducted with an insight into the mechanism involved, catalyst TiO2, irradiation sources, types of reactors, comparison between effective modes of TiO2 application as immobilized on surface or as suspension, and photocatalytic hybrid membrane system. Photocatalytic degradation technique with titanium dioxide is generally applied for treating wastewater containing organic contaminants due to its ability to achieve complete mineralization of the organic contaminants under mild conditions such as ambient temperature and ambient pressure. Recently, photocatalysis studies using TiO2 have been gaining attention for the degradation of persistent organic pollutants and other organic chemicals which are known to be endocrine disruptors. Treatment of wastewater in a titanium dioxide-suspended slurry reactor has been widely utilized due to its simplicity and enhanced degradation efficiency. However, this system requires separation of TiO2 from water after the photocatalytic process. The final section of the manuscript focuses on the removal of TiO2 using a membrane hybrid system. A two-stage coagulation and sedimentation process coupled with microfiltration hollow-fibre membrane process was found to achieve complete removal of TiO2, and the recovered TiO2 can be reused for a photocatalytic process after regeneration.
[References]
  1. Frank SN, Bard AJ, J. Phys. Chem., 81, 1484, 1977
  2. Pruden AL, Ollis DF, J. Catal., 82, 404, 1983
  3. Hsiao CY, Lee CL, Ollis DF, J. Catal., 82, 418, 1983
  4. Ollis DF, Hsiao CY, Budiman L, Lee CL, J. Catal., 88, 89, 1984
  5. Ollis DF, Environ. Sci. Technol., 19, 480, 1985
  6. Sappideen S, PhD Dissertation, UNSW, 2000
  7. Tang JW, Zou ZG, Yin J, Ye J, Chem. Phys. Lett., 382(1-2), 175, 2003
  8. Serpone N, Pelizzetti E, Photocatalysis: Fundamentals and applications, John Wiley & Sons, New York, 1989
  9. Schiavello M, Sclafani A, Thermodynamics and kinetic aspects in photocatalysis, Photocatalysis: Fundamentals and applications, John Wiley & Sons, Canada, 1989
  10. Sakthivel S, Neppolian B, Arabindoo B, Palanichamy M, Murugesan V, J. Sci. Ind. Res., 59, 556, 2000
  11. Okomoto K, Yamamoto Y, Tanaka H, Itaya A, Bull. Chem. Soc. Jpn., 58, 2023, 1985
  12. Okomoto K, Yamamoto Y, Tanaka H, Itaya A, Bill. Chem. Soc. Jpn., 58, 2015, 1985
  13. Augugliaro V, Palmisano L, Sclafani A, Tox. Environ. Chem., 16, 89, 1988
  14. Trillas M, Pujol M, Domenech X, J. Chem. Technol. Biotechnol., 55, 85, 1992
  15. Kaneko M, Okuru N, Photocatalysis: Science and technology, Kodansha Ltd, Japan. 356, 2002
  16. Gogate PR, Pandit AB, Adv. Environ. Res., 8, 501, 2004
  17. Wu CH, Chemosphere, 57, 601, 2004
  18. Rivera AP, Tanaka K, Hisanaga T, Appl. Catal. B: Environ., 3(1), 37, 1993
  19. Pelizzetti E, Minero C, Electrochim. Acta, 38, 47, 1993
  20. Chen PH, Jeng CH, Water. Sup., 13, 29, 1995
  21. Ye XS, Sha J, Jiao ZK, Zhang LD, Nanostruct. Mater., 8, 919, 1997
  22. Sun B, Smirniotis PG, Catal. Today, 88(1-2), 49, 2003
  23. Weng T, Photocatalytic purification and treatment of water and air, Elsevier Publishers, Amsterdam, 1993
  24. Smyth JR, Bish DL, Crystal structures and cation sites of the rock-forming minerals, Allen & Unwin, London, 1988
  25. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD, J. Solid State Chem., 92, 178, 1991
  26. Reeves P, Ohlhausen R, Sloan D, Scoggins KT, Clark C, Hutchinson B, Green D, Sol. Energy, 48, 413, 1992
  27. Bacsa RR, Kiwi J, Appl. Catal. B: Environ., 16(1), 19, 1998
  28. Yamazaki S, Matsunaga S, Hori K, Water Res., 35, 1022, 2001
  29. Xu NP, Shi ZF, Fan YQ, Dong JH, Shi J, Hu MZC, Ind. Eng. Chem. Res., 38(2), 373, 1999
  30. Legrini O, Oliveros E, Braun AM, Chem. Rev., 93, 671, 1993
  31. Hoffmann MR, Martin ST, Choi W, Behnemann DW, Chem. Rev., 93, 69, 1995
  32. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R, Catal. Today, 58(2-3), 199, 2000
  33. Matthews RW, McEvoy SR, J. Photochem. Photobiol. A-Chem., 64, 231, 1992
  34. Puma GL, Yue PL, Ind. Eng. Chem. Res., 38(9), 3238, 1999
  35. Demeestere K, Dewulf J, De Witte B, Van Langenhove H, Appl. Catal. B: Environ., 60(1-2), 93, 2005
  36. Tod AK, Catal., 44, 357, 1998
  37. Ray AK, Beenackers AACM, AIChE J., 44(2), 477, 1998
  38. Paquet DA, Ray WH, AIChE J., 40(1), 73, 1994
  39. Tang C, Chen V, Water Res., 38, 2775, 2004
  40. Shon H, Ultrafiltration and nanofiltration hybrid systems in wastewater treatment and reuse, PhD Dissertation. UTS, 2005
  41. Haarstrick A, Kut OM, Heinzle E, Environ. Sci. Technol., 30, 817, 1996
  42. Thiruvenkatachari R, Kwon TO, Moon IS, Sep. Sci. Technol., 40(14), 2871, 2005
  43. Yue PL, Water Sci. Technol., 35, 189, 1997
  44. Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW, Korean J. Chem. Eng., 20(5), 862, 2003
  45. Na YS, Kim DH, Lee CH, Lee SW, Park YS, Oh YK, Park SH, Song SK, Korean J. Chem. Eng., 21(2), 430, 2004
  46. Turchi CS. Klausner JF, Marchand E, Field test results for the solar photocatalysis detoxification of fuel-contaminated groundwater, Chemical Oxidation: Technology for the Nineties, 3rd International Symposium, 1993
  47. Dillert R, Vollmer S, Schober M, Theurich J, Bahnemann D, Arntz HJ, Pahlmann K, Wienefeld J, Schmedding T, Sager G, Chem. Eng. Technol., 22(11), 931, 1999
  48. Arslan I, Balcioglu IA, Bahnemann DW, Water Sci. Technol., 44, 171, 2001
  49. Goswami DY, J. Sol. Energy Eng.-Trans. ASME, 119, 101, 1997
  50. Freudenhammer H, Bahnemann D, Bousselmi L, Geissen SU, Ghrabi A, Saleh F, Si-Salah A, Siemon U, Vogelpohl A, Water Sci. Technol., 35, 149, 1997
  51. Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM, J. Photochem. Photobiol. A-Chem., 158, 27, 2003
  52. Anderson MA, Tunesi S, Xu Q, US patent 5035784, 1991
  53. Cooper GA, US Patent 4888101, 1989
  54. Oonada J, JP Patent 06071256, 1994
  55. Bideau M, Claudel B, Dubien C, Faure L, Karzouan H, J. Photochem. Photobiol. A-Chem., 91, 137, 1995
  56. Braun AM, In photochemical conversion and storage of solar energy, 8th International Conference on Photochemical Conversion and Storage of Solar Energy, Palermo, Italy, 1990
  57. Hofstadler K, Bauer R, Novalic S, Heisler G, Environ. Sci. Technol., 28, 670, 1994
  58. Arana J, Melian JAH, Rodriguez JMD, Diaz OG, Viera A, Pena JP, Sosa PMM, Jimenez VE, Catal. Today, 76(2-4), 279, 2002
  59. Arana J, Dona-Rodriguez JM, Rendon ET, Cabo CGI, Gonzalez-Diaz O, Herrera-Melian JA, Perez-Pena J, Colon G, Navio JA, Appl. Catal. B: Environ., 44(2), 161, 2003
  60. Xi W, Geissen SU, Water Res., 35, 1256, 2001
  61. Molinari R, Mungari M, Drioli E, Di Paola A, Loddo V, Palmisano L, Schiavello M, Catal. Today, 55(1-2), 71, 2000
  62. Molinari R, Palmisano L, Drioli E, Schiavello M, J. Membr. Sci., 206(1-2), 399, 2002
  63. Molinari R, Pirillo F, Falco M, Loddo V, Palmisano L, Chem. Eng. Process., 43(9), 1103, 2004
  64. Thiruvenkatachari R, Kwon TO, Moon IS, Korean J. Chem. Eng., 22(6), 938, 2005
  65. Kagaya S, Shimizu K, Arai R, Hasegawa K, Water Res., 33, 1753, 1999
  66. Sopajaree K, Qasim SA, Basak S, Rajeshwar K, J. Appl. Electrochem., 29(5), 533, 1999
  67. Sopajaree K, Qasim SA, Basak S, Rajeshwar K, J. Appl. Electrochem., 29(9), 1111, 1999
[Cited By]
  1. Subramanian M, Kannan A, Korean Journal of Chemical Engineering, 25(6), 1300, 2008
  2. Abdul JM, Vigneswaran S, Shon HK, Nathaporn A, Kandasamy J, Korean Journal of Chemical Engineering, 26(3), 724, 2009
  3. Chen R, Du Y, Xing W, Jin W, Korean Journal of Chemical Engineering, 26(6), 1580, 2009
  4. He J, Cai QZ, Luo Q, Zhang DQ, Tang TT, Jiang YF, Korean Journal of Chemical Engineering, 27(2), 435, 2010
  5. Jung S, Kim JH, Korean Journal of Chemical Engineering, 27(2), 645, 2010
  6. Lam SM, Sin JC, Mohamed AR, Korean Journal of Chemical Engineering, 27(4), 1109, 2010
  7. Nguyen-Phan TD, Pham VH, Yun H, Kim EJ, Hur SH, Chung JS, Shin EW, Korean Journal of Chemical Engineering, 28(12), 2236, 2011
  8. Laokiat L, Khemthong P, Grisdanurak N, Sreearunothai P, Pattanasiriwisawa W, Klysubun W, Korean Journal of Chemical Engineering, 29(3), 377, 2012
  9. Nguyen DB, Nguyen TDC, Dao TP, Tran HT, Nguyen VN, Ahn DH, Journal of Industrial and Engineering Chemistry, 18(5), 1764, 2012
  10. Mendoza JA, Kim HK, Park HK, Park KY, Korean Journal of Chemical Engineering, 29(11), 1483, 2012
  11. Chae YK, Park JW, Mori S, Suzuki M, Korean Journal of Chemical Engineering, 30(1), 62, 2013
  12. Alijani S, Moghaddam AZ, Vaez M, Towfighi J, Korean Journal of Chemical Engineering, 30(10), 1855, 2013
  13. Kang NK, Lee B, Choi GG, Moon M, Park MS, Lim JK, Yang JW, Korean Journal of Chemical Engineering, 31(5), 861, 2014
  14. Ahmadi M, Amiri P, Amiri N, Korean Journal of Chemical Engineering, 32(7), 1327, 2015
  15. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Isa MH, Journal of Industrial and Engineering Chemistry, 26, 1, 2015
  16. Zhang W, Zhao J, Zou X, Korean Chemical Engineering Research, 54(1), 127, 2016
  17. Natarajan K, Bajaj HC, Tayade RJ, Journal of Industrial and Engineering Chemistry, 34, 146, 2016
  18. Soleymani AR, Chahardoli R, Kaykhaii M, Journal of Industrial and Engineering Chemistry, 44, 90, 2016
  19. Rangkooy HA, Pour MN, Dehaghi BF, Korean Journal of Chemical Engineering, 34(12), 3142, 2017
  20. Gholami N, Ghasemi B, Anvaripour B, Jorfi S, Journal of Industrial and Engineering Chemistry, 62, 291, 2018
  21. Riaz S, Park SJ, Journal of Industrial and Engineering Chemistry, 84, 23, 2020