Issue
Korean Journal of Chemical Engineering,
Vol.24, No.4, 583-587, 2007
Deactivation of Pt/wire-mesh and vanadia/monolith catalysts applied in selective catalytic reduction of NOx in flue gas
In this study the deactivation of Pt/wire mesh and vanadia/monolith catalysts by aerosol particles of some inorganic salts (K2SO4, KCl and ZnCl2) with high or low melting points has been investigated. The aerosol particles may either diffuse within the matrix of the catalysts and block the mezzo and micro pores, or deposit on the outer surface of the catalysts and form a porous layer causing a mass transfer resistance that ultimately deactivates the catalysts. It has been observed that in both Pt/wire mesh and vanadia/monolith catalysts the deactivation effect of ZnCl2 was more pronounced compared to other salts. As an example, after 31 hours of exposure to ZnCl2, 10% of the catalysts activities was lost. This may be related to the ZnCl2 lower melting point in comparison with other poisons. These results are in agreement with the previous findings for deactivation of wire-mesh catalysts used for oxidation of volatile organic compounds (VOC) and CO by exposing the catalysts to the aerosols generated from inorganic salts.
[References]
  1. Medros FG, Eldridge JW, Kittrel JR, Ind. Eng. Chem. Res., 28, 1171, 1989
  2. Bosch H, Janssen F, Catal. Today, 2, 342, 1987
  3. Bosch H, Janssen F, Catal. Today, 2, 369, 1989
  4. Lietti L, Forzatti P, Heter. Chem. Rev., 3, 33, 1996
  5. Forzatti P, Nova I, Beretta A, Catal. Today, 56(4), 431, 2000
  6. Bell A, Manzer LE, Chem. Eng. Prog., 91(2), 1995
  7. Lee HT, Rhee HK, Korean J. Chem. Eng., 19(4), 574, 2002
  8. Seo HK, Oh JW, Lee SC, Sung JY, Choung SJ, Korean J. Chem. Eng., 18(5), 698, 2001
  9. Chen JP, Buzanowski MA, Yang RT, Cichanowisz JE, J. Air Waste Manage. Assoc., 40, 1403, 1990
  10. Beekman JW, Hegedus LL, Ind. Eng. Chem. Res., 30, 969, 1991
  11. Cybulski A, Moulijn JA, Catal. Rev.-Sci. Eng., 36(2), 179, 1994
  12. Ozkan G, Dogu G, Ind. Eng. Chem. Res., 36(11), 4734, 1997
  13. Kong SJ, Jun JH, Yoon KJ, Korean J. Chem. Eng., 21(4), 793, 2004
  14. Khodayari R, Odenbrand CUI, Chem. Eng. Sci., 54(12), 1775, 1999
  15. Chen JP, Yang RT, J. Catal., 125, 411, 1990
  16. Babcock Hitachi Company, Commercial Information, 1990
  17. Suikannen K, PhD Thesis, Dept. of Chem. Eng., Lapperanta University of Technology, 1990
  18. Srihiranpullop S, Praserthdam P, Mongkhonsi T, Korean J. Chem. Eng., 17(5), 548, 2000
  19. Khodayari R, Odenbrand CUI, Ind. Eng. Chem. Res., 37(4), 1196, 1998
  20. Pagels J, Strand M, Gudmundsson A, Szpila A, Rissler J, Swietlicki E, Sanati M, Bohgard M, Proceedings of the european aerosol conference, Leipzig, September 3-7, 2001
  21. Christensen KA, PhD Thesis, University of Copenhagen, Denmark, 1995
  22. Valmari T, Kauppinen EI, Kurkela J, Jokiniemi JK, Sfiris G, Revitzer H, J. Aerosol Sci., 29(4), 445, 1998
  23. Kauppinen EI, Pakkanen TA, Environ. Sci. Technol., 24, 1811, 1990
  24. Hegedus LL, Ind. Eng. Chem. Fundam., 13, 3, 1974
  25. Berg M, Hargitai T, Brandin J, Berg N, Progress in thermochemical biomass conversion, Bridgewater, A.V., editor, Blackwell Scientific Publications, UK, 2001
  26. Moradi F, PhD Thesis, Amirkabir University of Technology, Tehran, Iran, 2003