Issue
Korean Journal of Chemical Engineering,
Vol.23, No.6, 1046-1054, 2006
Porous properties of activated carbon produced from Eucalyptus and Wattle wood by carbon dioxide activation
This work focused on the preparation of activated carbon from eucalyptus and wattle wood by physical activation with CO2. The preparation process consisted of carbonization of the wood samples under the flow of N2 at 400 ℃ and 60 min followed by activating the derived chars with CO2. The activation temperature was varied from 600 to 900 ℃ and activation time from 60 to 300 min, giving char burn-off in the range of 20-83%. The effect of CO2 concentration during activation was also studied. The porous properties of the resultant activated carbons were characterized based on the analysis of N2 adsorption isotherms at .196 ℃. Experimental results showed that surface area, micropore volume and total pore volume of the activated carbon increased with the increase in activation time and temperature with temperature exerting the larger effect. The activated carbons produced from eucalyptus and wattle wood had the BET surface area ranging from 460 to 1,490 m2/g and 430 to 1,030 m2/g, respectively. The optimum activation conditions that gave the maximum in surface area and total pore volume occurred at 900 ℃ and 60 min for eucalyptus and 800 ℃ and 300 min for wattle wood. Under the conditions tested, the obtained activated carbons were dominated with micropore structure (~80% of total pore volume).
[References]
  1. Ahmadpour A, Do DD, Carbon, 34, 471, 1996
  2. Ahmadpour A, Do DD, Carbon, 35, 1723, 1997
  3. Arriagada R, Garcia R, Molina-Sabio M, Rodriguez-Reinoso F, Microporous Mesoporous Mater., 8, 123, 1997
  4. Caramuscio P, Stefano LD, Seggiani M, Vitolo S, Narducci P, Waste Manage., 23, 345, 2003
  5. Chang CF, Chang CY, Tsai WT, J. Colloid Interface Sci., 232(1), 45, 2000
  6. Darmstadt H, Garcia-Perez M, Chaala A, Cao NZ, Roy C, Carbon, 39, 815, 2001
  7. Daud WMAW, Ali WSW, Bioresour. Technol., 93(1), 63, 2004
  8. Do DD, Adsorption analysis: Equilibria and kinetics, Imperial College Press, Singapore, 1998
  9. Duran-Valle CJ, Gomez-Corzo M, Pastor-Villegas J, Gomez-Serrano V, J. Anal. Appl. Pyrolysis, 73, 49, 2005
  10. Howe-Grant M, Encyclopedia of chemical technology, John Wiley & Sons, New York, 1992
  11. Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A, Bioresour. Technol., 96(12), 1364, 2005
  12. Jagtoyen M, Derbyshire F, Carbon, 36, 1085, 1998
  13. Jimenez L, Garcia JC, Perez I, Ariza J, Lopez F, Ind. Eng. Chem. Res., 40(26), 6201, 2001
  14. Kim SH, Bidkar A, Ngo HH, Vigneswaran S, Moon H, Korean J. Chem. Eng., 18(2), 163, 2001
  15. Kim SJ, Cho SY, Kim TY, Korean J. Chem. Eng., 19(1), 61, 2002
  16. Kim JH, Wu SH, Pendleton P, Korean J. Chem. Eng., 22(5), 705, 2005
  17. Lastoskie C, Gubbins KE, Quirke N, J. Phys. Chem. B, 97, 4786, 1993
  18. Lee BG, Rowell RM, J. Natural Fibers, 1, 97, 2004
  19. Lua AC, Guo J, Carbon, 38, 1089, 2000
  20. Moon DJ, Chung MJ, Kim H, Lee BG, Lee SD, Park KY, Korean J. Chem. Eng., 15(6), 619, 1998
  21. Oh GH, Park CR, Fuel, 81, 327, 2002
  22. Olivier JP, J. Porous Mat., 2, 9, 1995
  23. Ouajai S, Shanks RA, Polym. Degrad. Stabil., 89, 327, 2005
  24. Patrick JW, Porosity in carbons: characterization and applications, Edward Arnold, London, 1995
  25. Sainz-Diaz CI, Griffiths AJ, Fuel, 79, 1863, 2000
  26. Sanchez AR, Elguezabal AA, Saenz LLT, Carbon, 39, 1367, 2001
  27. Tancredi N, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ, Fuel, 75, 1701, 1996
  28. Turmuzi M, Daud WRW, Tasirin SM, Takriff MS, Iyuke SE, Carbon, 42, 453, 2004
  29. Xiao B, Thomas KM, Langmuir, 21(9), 3892, 2005
  30. Yang T, Lua AC, J. Coll. Int. Sci., 267, 408, 2003
  31. Zhang TY, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC, Chem. Eng. J., 105(1-2), 53, 2004