Issue
Korean Journal of Chemical Engineering,
Vol.23, No.6, 1009-1015, 2006
Phase behavior of water-insoluble simvastatin drug in supercritical mixtures of chlorodifluoromethane and carbon dioxide
Phase behavior data are presented for simvastatin, a water-insoluble drug, in supercritical solvent mixtures of chlorodifluoromethane (CHClF2) and carbon dioxide (CO2). The solubilities of the simvastatin drug in the solvent mixtures of CHClF2 and CO2 were determined by measuring the cloud point pressures using a variable-volume view cell apparatus as functions of temperature, solvent composition, and amount of the drug loaded into the solution. The cloud point pressure increased with increasing the system temperature. As the CHClF2 composition in the solvent mixture increased, the cloud point pressure at a fixed temperature decreased. Addition of CHClF2 to CO2 caused an increase of the dissolving power of the mixed solvent for the simvastatin drug due to the increase of the solvent polarity. CHClF2 acted as a solvent for simvastatin, while CO2 acted as an anti-solvent. The cloud point pressure increased as the amount of the simvastatin drug in the solvent mixture increased. Consequently, the solubility of the simvastatin drug in the solvent mixture of CHClF2 and CO2 decreased with increasing the CO2 content in the solvent mixture as well as with increasing the system temperature.
[References]
  1. Bakhbakhi Y, Charpentier PA, Rohani S, Int. J. Pharm., 309, 71, 2006
  2. Datea AA, Patravale VB, Curr. Opin. Colloid Interface Sci., 9, 222, 2004
  3. Duarte ARC, Costa MS, Simplicio AL, Cardoso MM, Duarte CMM, Int. J. Pharm., 308, 168, 2006
  4. Fages J, Lochard H, Letourneau JJ, Sauceau M, Rodier E, Powder Technol., 141(3), 219, 2004
  5. Ginty PJ, Whitaker MJ, Shakesheff KM, Howdle SM, Materials Today, 8, 42, 2005
  6. Guney O, Akgerman A, AIChE J., 48(4), 856, 2002
  7. Huang Z, Sun GB, Chiew YC, Kawi S, Powder Technol., 160(2), 127, 2005
  8. Kerc J, Srcic S, Knez Z, Sencar-Bozic P, Int. J. Pharm., 182, 33, 1999
  9. Kwak H, Jung JW, Bae SY, Kumazawa H, Korean J. Chem. Eng., 21(6), 1245, 2004
  10. Lee BC, Kim NI, Korean J. Chem. Eng., 19(1), 132, 2002
  11. Lee JM, Lee BC, Hwang SJ, J. Chem. Eng. Data, 45, 1162, 2000
  12. Lee JM, Lim JS, Lee YW, J. Chem. Eng. Data, 48, 774, 2003
  13. Miguel F, Martin A, Gamse T, Cocero MJ, J. Supercrit. Fluids, 36, 225, 2006
  14. Perrut M, Jung J, Leboeuf F, Int. J. Pharm., 288, 3, 2005
  15. Reverchon E, Adami R, J. Supercrit. Fluids, 37, 1, 2006
  16. Reverchon E, Della Porta G, J. Supercrit. Fluids, 26, 243, 2003
  17. Reverchon E, Spada A, Powder Technol., 141(1-2), 100, 2004
  18. Rodier E, Lochard H, Sauceau M, Letourneau JJ, Freiss B, Fages J, Eur. J. Pharm. Sci., 26, 184, 2005
  19. Shekunov BY, York P, J. Cryst. Growth, 211, 122, 2000
  20. Song KH, Lee CH, Lim JS, Lee YW, Korean J. Chem. Eng., 19(1), 139, 2002
  21. Steckel H, Pichert L, Muller BW, Eur. J. Pharm. Biopharm., 57, 507, 2004
  22. Thakur R, Gupta RB, Int. J. Pharm., 308, 190, 2006
  23. Turk M, Hils P, Helfgen B, Schaber K, Martin HJ, Wahl MA, J. Supercrit. Fluids, 22, 75, 2002
  24. Van Nijlen T, Brennan K, Van den Mooter G, Blaton N, Kinget R, Augustijns P, Int. J. Pharm., 254, 173, 2003
  25. Won DH, Kim MS, Lee S, Park JS, Hwang SJ, Int. J. Pharm., 301, 199, 2005
  26. Yeo SD, Kiran E, J. Supercrit. Fluids, 34, 287, 2005