Issue
Korean Journal of Chemical Engineering,
Vol.23, No.6, 954-960, 2006
Gasification of municipal solid waste in a pilot plant and its impact on environment
Municipal solid waste from three cities was gasified in a 3 ton/day capacity gasification/melting pilot plant based on Thermoselect at a temperature of around 1,200 ℃ using double inverse diffusion flame burner. The synthesis gas (syngas) obtained from gasification contains 25-34% CO and 28-38% of H2. The high heating value of syngas was in the range of 10.88-14.65MJ/Nm3. Volatile organic compounds like furan, dioxin, and other organics in gaseous and liquid phase were effectively destroyed because of the high temperature of the high temperature reactor and shock cooling of syngas. Pollutants in exhaust gases were also found to be satisfying the Korean emission standard. Leaching concentration of heavy metals in the melted slag (vitrified mineral aggregate), fly ash, and treated water was much less than the Korean regulatory limit values due to high melting temperature (1,600 ℃). The vitrified slag was of dark brown color. The glassy and amorphous nature of the vitrified mineral aggregate was further confirmed from SEM micrograph and XRD spectra of slag. The vitrified mineral aggregate could be used as natural raw material in cement and construction industry.
[References]
  1. Barbieri L, Bonamartini AC, Lancellotti I, J. Eur. Ceramic Soc., 20, 2477, 2000
  2. Bjorklund A, Melaina M, Keoleian G, Int. J. Hydrog. Energy, 26, 1209, 2001
  3. Calaminus B, Stahlberg R, Waste Manage., 18, 547, 1998
  4. Chandler AJ, Eighmy TT, Hartlein J, Hjelmar O, Kosson DS, Sawell SE, Van der Sloot HA, Vehlow J, Municipal solid waste incinerator residues, Elsevier Science, Amsterdam, 1997
  5. Climate Change 2001: The Scientific Basis, Intergovernmental Penal on Climate Change (IPCC), Cambridge Press, Cambridge, 2001
  6. Choi YC, Lee JG, Kim JH, Hong JC, Kim YK, Yoon SJ, Lee SH, Park MH, Korean J. Chem. Eng., 23(3), 380, 2006
  7. Christensen JB, Christensen TH, Water Res., 34, 3743, 2000
  8. Ecke H, Sakanakura H, Matsuto T, Tanaka N, Lagerkvist A, Environ. Sci. Technol., 35, 1531, 2001
  9. Feuerriegel U, Kunsch M, Stahlberg R, Steiger F, The material and energy balance of the thermoselect process. In The thermoselect process for the degasification and gasification of wastes, F. J. Schweitzer (ed.), EF-Verlag, Berlin, 1994
  10. FUNG DPC, KIM SD, Korean J. Chem. Eng., 7(2), 109, 1990
  11. Goldstein N, Steuteville R, Farrell M, Biocycle, 37, 46, 1996
  12. Huang H, Buekens A, Chemosphere, 44, 1505, 2001
  13. Hur JM, Kim SH, Korean J. Chem. Eng., 17(4), 433, 2000
  14. Hur JM, Park JA, Son BS, Jang BG, Kim SH, Korean J. Chem. Eng., 18(2), 233, 2001
  15. Hyun JS, Park JW, Maken S, Park JJ, J. Ind. Eng. Chem., 10(3), 361, 2004
  16. Jung CH, Matsuto T, Tanaka N, Waste Manage., 25, 301, 2005
  17. Jun JH, Lee TJ, Lim TH, Nam SW, Hong SA, Yoon KJ, J. Catal., 221(1), 178, 2004
  18. Kaminsky W, Pyrolysis of Polymers. In Emerging technologies in plastic recycling, G.D. Andrews, P. M. Subramanian (Eds.) American Chemical Society, Philadelphia, 1992
  19. Kim KH, Kim MY, Atmos. Environ., 36, 4919, 2002
  20. Kim MH, Park HK, Chung GY, Lim HC, Nam SW, Lim TH, Hong SA, J. Power Sources, 103(2), 245, 2002
  21. Kim KY, Korea environmental policy bulletin, Ministry of Environment Institute, Republic of Korea, Vol. 1, Issue 1, 2003
  22. Kiss G, Marfiewicz W, Riegel J, Stahlberg R, Thermoselectrecovery of energy and raw materials from waste, in the thermoselect process for the degasification and gasification of wastes, F. J. Schweitzer, (ed.), EF-Verlag, Berlin, 1994
  23. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH, Crit. Rev. Environ. Sci. Technol., 22, 297, 2002
  24. Ko MK, Lee WY, Kim SB, Lee KW, Chun HS, Korean J. Chem. Eng., 18(6), 961, 2001
  25. Kwak TH, Lee S, Maken S, Shin HC, Park JW, Yoo YD, Energy Fuels, 19(6), 2268, 2005
  26. Lee SH, Choi KB, Lee JG, Kim JH, Korean J. Chem. Eng., 23(4), 576, 2006
  27. Lee SW, Nam SS, Kim SB, Lee KW, Choi CS, Korean J. Chem. Eng., 17(2), 174, 2000
  28. Li CT, Huang YJ, Huang KL, Lee WJ, Ind. Eng. Chem. Res., 42(11), 2306, 2003
  29. Li M, Hu S, Xiang J, Sun LS, Li PS, Su S, Sun XX, Energy Fuels, 17(6), 1487, 2003
  30. Lin KL, Wang KS, Tzeng BY, Lin CY, Waste Manage., 24, 199, 2004
  31. Maken S, Hyun J, Park JW, Song HC, Lee S, Chang EH, J Sci. Ind. Res., 64, 198, 2005
  32. Malkow T, Waste Manage., 24, 53, 2004
  33. Ministry of Environment Report, Regulatory of Waste Management, Seoul, Republic of Korea, 2000
  34. Ministry of Environment Report, State of MSW Generation in Korea, Seoul, Republic of Korea, 2005
  35. Park JJ, Park K, Kim JS, Maken S, Song H, Shin H, Park JW, Choi MJ, Energy Fuels, 17(6), 1576, 2003
  36. Park JJ, Park K, Park JW, Kim DC, Korean J. Chem. Eng., 19(4), 658, 2002
  37. Park JW, Shin HC, Atmos. Environ., 35, 3445, 2001
  38. Park K, Hyun J, Maken S, Jang S, Park JW, Energy Fuels, 19(1), 258, 2005
  39. Park YJ, Heo J, J. Hazard. Mater., 91, 83, 2002
  40. Sakai S, Sawell SE, Chandler AJ, Eighmy TT, Kosson DS, Vehlow J, Van der Sloot HA, Hartlen J, Hjelmar O, Waste Manage., 16, 341, 1996
  41. Sanin FD, Knappe DRU, Barlaz MA, Water Res., 34, 3063, 2000
  42. Stahlberg R, High-temperature recycling and minimization of environmental pollution through complete thermal-chemical material conversion, MUT International Congress for Environmental Engineering and Research, Basel, October, 1992
  43. Takaoka M, Takeda N, Miura S, Water Sci. Technol., 36, 275, 1997
  44. Tchobanoglous G, Theisen H, Vigil S, Integrated solid waste management, McGraw-Hill, New York, 1993
  45. Werther J, Ogada T, “Sewage sludge combustion,” Prog. Energy & Combustion Sci., 25, 55, 1999
  46. Yoshiie R, Kawaguchi M, Nishimura M, Moritomi H, J. Chem. Eng. Jpn., 33(3), 551, 2000
  47. Yoshiie R, Nishimura M, Moritomi H, Fuel, 81, 1335, 2002
  48. Yun Y, Ju JS, Korean J. Chem. Eng., 20(6), 1037, 2003
  49. Yun Y, Yoo YD, Korean J. Chem. Eng., 18(5), 679, 2001