Issue
Korean Journal of Chemical Engineering,
Vol.23, No.6, 888-895, 2006
Wire-mesh honeycomb catalysts for selective catalytic reduction of NO with NH3
Both flat and corrugated wire mesh sheets were coated with aluminum powder by using electrophoretic deposition (EPD) method. Controlled thermal sintering of coated samples yielded uniform porous aluminum layer with a thickness of 100 μm that was attached firmly on the wire meshes. Subsequent controlled calcination formed a finite thickness of Al2O3 layer on the outer surface of each deposited aluminum particles, which resulted in the formation of Al2O3/Al double-layered composite particles that were attached firmly on the wire surface to form a certain thickness of porous layer. A rectangular-shaped wire-mesh honeycomb (WMH) module with triangular-shaped channels was manufactured by packing alternately the flat sheet and corrugated sheet of the Al2O3/Al-coated wire meshes. This WMH was further coated with V2O5-MoO3-WO3 catalyst by wash-coating method to be applied for the selective catalytic reduction (SCR) of NO with NH3. With an optimized catalyst loading of 16 wt%, WMH catalyst module shows more than 90% NO conversion at 240 ℃ and almost complete NO conversion at temperatures higher than 300 ℃ at GHSV 5,000 h.1. When compared with conventional ceramic honeycomb catalyst, WMH catalyst gives NO conversion higher by 20% due to reduced mass transfer resistance by the existence of three dimensional opening holes in WMH.
[References]
  1. Ahlstromsilversand AF, Odenbrand CU, Appl. Catal. A: Gen., 153(1-2), 177, 1997
  2. Amiridis MD, Duevel RV, Wachs IE, Appl. Catal. B: Environ., 20(2), 111, 1999
  3. de Boer M, Huisman HM, Mos RJM, Leliveld RG, van Dillen AJ, Geus JW, Catal. Today, 17, 189, 1993
  4. Bosch H, Janssen FJJG, van den Kerkhof FMG, Oldenziel J, van Ommen JG, Ross JRH, Appl. Catal., 25, 239, 1986
  5. Chae HJ, Nam IS, Ham SW, Hong SB, Appl. Catal. B: Environ., 53(2), 117, 2004
  6. Chen JP, Yang RT, J. Catal., 125, 411, 1990
  7. Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91, 1996
  8. Jung JH, Shon BH, Yoo KS, Kim HG, Lee HK, HWAHAK KONGHAK, 41(3), 403, 2003
  9. Chung KS, Jiang ZD, Gill BS, Chung JS, Appl. Catal. A: Gen., 237(1-2), 81, 2002
  10. Cybulski A, Moulijn JA, Structured catalysts and reactors, Marcel Dekker, Inc., 1998
  11. Dutoit DC, Reiche MA, Baiker A, Appl. Catal. B: Environ., 13(3-4), 275, 1997
  12. Handy BE, Baiker A, Schraml-Marth M, Wokaun A, J. Catal., 133, 1, 1992
  13. Handy BE, Maciejewski M, Baiker A, J. Catal., 134, 75, 1992
  14. Jiang ZD, Chung KS, Kim GR, Chung JS, Chem. Eng. Sci., 58(7), 1103, 2003
  15. Kim BS, Lee SH, Park YT, Ham SW, Chae HJ, Nam IS, Korean J. Chem. Eng., 18(5), 704, 2001
  16. Kim BT, Lee HG, Chun GS, Lee GJ, Park HS, HWAHAK KONGHAK, 25, 169, 1987
  17. Kim GR, Jiang Z, Chung JS, Korean Patent 0336821, 2002
  18. Lee IY, Kim DW, Lee JB, Yoo KO, Chem. Eng. J., 90(3), 267, 2002
  19. Lee HT, Rhee HK, Korean J. Chem. Eng., 19(4), 574, 2002
  20. Lee SH, Ahn JS, Kim JH, News Inf. Chem. Eng., 19, 468, 2001
  21. Lintz HG, Turek T, Appl. Catal. A: Gen., 85, 13, 1992
  22. Tian LQ, Ye DQ, Liang H, Catal. Today, 78(1-4), 159, 2003
  23. Long RQ, Yang RT, J. Catal., 196(1), 73, 2000
  24. Lucas D, Brown NJ, Combust. Flame, 47, 219, 1982
  25. Park JH, Kim DJ, Kim KS, HWAHAK KONGHAK, 40(3), 351, 2002
  26. Piehl G, Liese T, Grunert W, Catal. Today, 54(4), 401, 1999
  27. Rajadhyaksha RA, Hausinger G, Ramstetter HZ, Knozinger HS, Appl. Catal., 51, 67, 1989
  28. Topsoe NY, Topsoe H, Dumesic JA, J. Catal., 151(1), 226, 1995
  29. Weng RY, Lee JF, Appl. Catal. A: Gen., 105, 41, 1993
  30. Went GT, Leu LJ, Rosin RR, Bell AT, J. Catal., 134, 492, 1992
  31. Yang KS, Choi JS, Chung JS, Catal. Today, 97(2-3), 159, 2004
  32. Yang KS, Jiang Z, Chung JS, Surf. Coat. Technol., 168, 103, 2003
  33. Yoo KS, Lee JG, Park DK, Jeong MJ, Lee C, Shin JW, HWAHAK KONGHAK, 41(2), 219, 2003