Issue
Korean Journal of Chemical Engineering,
Vol.23, No.5, 753-760, 2006
Gas management in flow field design using 3D direct methanol fuel cell model under high stoichiometric feed
This study presents a 3D CFD model for modeling gas evolution in anode channels of a DMFC under high stoichiometric feed. The improved two-phase model includes a new submodel for mass source and interphase transfer in anode channels. Case studies of typical flow field designs such as parallel and serpentine flow fields illustrate applications of the CFD model. Simulation results reveal that gas management of typical flow fields is ineffective under certain operating conditions. The CFD-based simulations are used to visualize and to analyze the gas evolution and flow patterns in anode channels. The developed CFD model is useful in flow field design for improving gas management in DMFC.
[References]
  1. Argyropoulos P, Scott K, Taama WM, Electrochim. Acta, 44(20), 3575, 1999
  2. Argyropoulos P, Scott K, Taama WM, Chem. Eng. J., 78(1), 29, 2000
  3. Baxter SF, Battaglia VS, White RE, J. Electrochem. Soc., 146(2), 437, 1999
  4. Bewer T, Beckmann T, Dohle H, Mergel J, Stolten D, J. Power Sources, 125(1), 1, 2004
  5. Danilov VA, Lim J, Moon I, Choi KH, A CFD-based Twofluid Model for a DMFC, AIChE Annual Meeting, October 30 - November 4, Cincinnati, Ohio, 2005
  6. Geiger A, Lehmann E, Vontobel P, Scherer GG, Direct methanol fuel cell . in situ investigation of carbon dioxide patterns in anode flow fields by neutron radiography, Scientific Report 2000, Volume V, p. 86-87, ed. by: C. Daum and J. Leuenberger, Switzerland, http://www1.psi.ch/
  7. Kim MC, Kim KY, Kim S, Korean J. Chem. Eng., 20(4), 601, 2003
  8. Kulikovsky AA, Electrochem. Commun., 7, 237, 2005
  9. Lee S, Kim D, Lee J, Chung ST, Ha HY, Korean J. Chem. Eng., 22(3), 406, 2005
  10. Lim J, Danilov VA, Cho Y, Choi K, Chang H, Moon I, Flow field design for gas management in a direct methanol fuel cell with a bipolar plate, in: Proceeding of PSE ASIA, 2005
  11. Pak C, Lee SJ, Lee SA, Chang H, Korean J. Chem. Eng., 22(2), 214, 2005
  12. Sokolichin A, Eigenberger G, Lapin A, Lubbert A, Chem. Eng. Sci., 52(4), 611, 1997
  13. Sundmacher K, Scott K, Chem. Eng. Sci., 54(13-14), 2927, 1999
  14. Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles ED, Chem. Eng. Sci., 56(2), 333, 2001
  15. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, LeMouel A, McCord BN, Int. J. Multiph. Flow, 25(3), 395, 1999
  16. Wang ZH, Wang CY, J. Electrochem. Soc., 150(4), A508, 2003
  17. Wang ZH, Wang CY, Chen KS, J. Power Sources, 94(1), 40, 2001
  18. Yang H, Zhao TS, Electrochim. Acta, 50(16-17), 3243, 2005
  19. Yang H, Zhao TS, Cheng P, Int. J. Heat Mass Transf., 47(26), 5725, 2004
  20. Yang H, Zhao TS, Ye Q, J. Power Sources, 142(1-2), 117, 2005