Issue
Korean Journal of Chemical Engineering,
Vol.23, No.5, 731-735, 2006
Increasing the conversion fraction of sulfur to sodium thiosulfate with the ultrasound energy
The usage of ultrasound has gained popularity in the recent years. Ultrasonic processing means blasting liquids, usually water, with very intense sound at high frequency, producing very well mixed powerful chemical and physical reactions. This paper deals with the investigation of the effect of ultrasonic energy on the conversion fraction of sulfur in the production reaction of sodium thiosulfate which was obtained from sulfur and Na2SO3 solution. Concentration of Na2SO3 solution parameter was chosen as the constant parameter. The experiments were performed with various amplitudes of ultrasound power and in the absence and presence of ultrasound energy in various temperatures with various particle sizes. The results indicate that the conversion fraction values increase in the presence of ultrasound energy and increase at high amplitude values.
[References]
  1. Atchley AA, Crum LA, Acoustic cavitation and bubble dynamics, in ultrasound: its chemical physical and biological effects, ed K. S. Suslick, VCH, Weinheim, 1988
  2. Awate SV, Waghmode SB, Patil KR, Agashe MS, Joshi PN, Korean J. Chem. Eng., 18(2), 257, 2001
  3. Ceccio SL, Brennen CE, J. Fluid Mech., 233, 633, 1991
  4. Choi JH, Kim SB, Korean J. Chem. Eng., 11(3), 178, 1994
  5. Donatti DA, Ruiz AI, Vollet DR, Ultrasonics Sonochemistry, 9(3), 133, 2001
  6. Faid F, Contamine F, Wilhelm AM, Delmas H, Ultrason. Sonochem., 5(3), 119, 1998
  7. Hagenson LC, Doraiswamy LK, Chem. Eng. Sci., 53(1), 131, 1998
  8. Iliev V, Prahov L, Bilyarska L, Fischer H, Schulz-Ekloff G, Wohrle D, Petrov L, Journal of Moleculer Catalysis A: Chemical, 151, 161, 2000
  9. Inoue T, Mori K, Kageyama Y, Mori H, Crystal Research and Technology, 35, 587, 2000
  10. Kim IK, Yoa SJ, Lee JK, Huang CP, Korean J. Chem. Eng., 20(6), 1045, 2003
  11. Lyczko N, Espitalier F, Louisnard O, Schwartzentruber J, Chem. Eng. J., 86(3), 233, 2002
  12. Mason TJ, The uses of ultrasound in chemistry, Sonochemistry, Royal Society of Chemistry, 1990
  13. Mason TJ, Lorimer JP, Theory. Applications and uses of ultrasound in chemistry, Sonochemistry, Ellis Horwood, 1989
  14. Okur H, Tekin T, Ozer A, Bayramoglu M, Hydrometallurgy, 67, 79, 2002
  15. Qin W, Yuan YH, Dai YY, Chin. J. Chem. Eng., 9(4), 427, 2001
  16. Shah YT, Pandit AB, Moholkar VS, Cavitation reaction engineering, The Plenum Chemical Engineering Series, Kluwer Academic/ Plenum Publishers, LoC 99-37362, ISBN 0-306-46141-2, 2000
  17. Sivakumar M, Tatake PA, Pandit AB, Chem. Eng. J., 85(2-3), 327, 2002
  18. Snell FD, Biffen FM, Commercial methods of analysis, Mc Graw-Hill, New York, 753, 1944
  19. Suslick KS, The chemistry of ultrasound, The Yearbook of Science & the Future, 1994
  20. Tekin T, Hydrometallurgy, 64, 187, 2002
  21. Woo J, Lee C, Hong Y, Yoon Y, Hahm Y, Chang Y, Journal of the Korean Institute of Chemical Engineers, 34, 208, 1996
  22. Yun CY, Chah S, Kang SK, Yi J, Korean J. Chem. Eng., 21(5), 1062, 2004
  23. Zhao JH, Acta Chim. Sin., 60, 81, 2002