Issue
Korean Journal of Chemical Engineering,
Vol.23, No.1, 63-70, 2006
Sequential competitive sorption and desorption of chlorophenols in organoclay
Single- and bi-solute sorption and desorption of 2-chlorophenol (2-CP) and 2,4,5-trichlorophenol (2,4,5-TCP) in montmorillonite modified with hexadecyltrimethyl-ammonium (HDTMA) were investigated by sequential sorption and desorption. Effect of pH on the sequential sorption and desorption was investigated. As expected by the magnitude of octanol : water partition coefficient (Kow), both sorption and desorption affinity of 2,4,5-TCP was higher than that of 2-CP at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 80% and 99% of 2-chlorophenolate and 2,4,5-trichlophenolate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation in the previous sorption stage. Freundlich model was used to analyze the single-solute sorption and desorption data. No appreciable desorption-resistant (or non-desorbing) fraction was observed in organoclays after several sequential desorptions. This indicates that sorption of phenols in organoclay mainly occurs via partitioning into the core of the pseudo-organic medium, thereby causing desorption nearly reversible. In bisolute competitive systems, sorption (or desorption) affinity of both chlorophenols was reduced compared to that in its single-solute system due to the competition between the solutes. The ideal adsorbed solution theory (IAST) coupled with the single-solute Freundlich model was positively correlated with the bisolute sequential competitive sorption and desorption equilibria.
[References]
  1. Allen-King RM, Grathwohl P, Ball WP, Adv. Water Resour., 25, 985, 2002
  2. Bhandari A, Novak JT, Berry DF, Environ. Sci. Technol., 30, 2305, 1996
  3. Bhandari A, Novak JT, Burgos WD, Berry DF, J. Environ. Eng., 123, 506, 1997
  4. Boyd SA, Shaobai S, Lee JF, Mortland MM, Clay Clay Min., 36, 125, 1988
  5. Burris DR, Antworth CP, J. Contam. Hydrol., 10, 325, 1992
  6. Chiou CT, Kile DE, Rutherford DW, Sheng G, Boyd SA, Environ. Sci. Technol., 34, 1254, 2000
  7. Chiou CT, Kile DE, Environ. Sci. Technol., 32, 338, 1998
  8. Crocker FH, Guerin WF, Boyd SA, Environ. Sci. Technol., 29, 2953, 1995
  9. Danis TG, Albanis TA, Toxicol. Environ. Chem., 62, 65, 1997
  10. Dentel SK, Bottero JY, Khatib K, Demougeot H, Duguet JP, Anselme C, Water Res., 29, 1273, 1995
  11. DiVincenzo JP, Sparks DL, Arch. Environ. Contam. Toxicol., 40, 445, 2001
  12. Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40, 3, 2000
  13. Huh JK, Song DI, Jeon YW, Sep. Sci. Technol., 34(4), 571, 1999
  14. Huh JK, Song DI, Jeon YW, Sep. Sci. Technol., 35, 243, 2000
  15. Kan AT, Fu G, Hunter MA, Tomson MB, Environ. Sci. Technol., 31, 2176, 1997
  16. Kan AT, Fu G, Hunter M, Chen W, Ward CH, Tomson MB, Environ. Sci. Technol., 32, 892, 1998
  17. Kim CG, Clarke WP, Lockington D, Korean J. Chem. Eng., 16(2), 215, 1999
  18. Kim DG, Song DK, Jeon YW, Sep. Sci. Technol., 36(14), 3159, 2001
  19. Kim JH, Shin WS, Kim YH, Choi SJ, Jo WK, Song DI, Korean J. Chem. Eng., 22(6), 857, 2005
  20. Kim JH, Shin WS, Kim YH, Choi SJ, Jeon YW, Song DI, Water Sci. Technol., 47, 59, 2003
  21. Kim YS, Song DI, Jeon JW, Choi SJ, Sep. Sci. Technol., 31(20), 2815, 1996
  22. Kleibaum DG, Kupper LL, Applied regression analysis and other multivariable methods, Duxbury Press, North Scituate, Mass., pp. 71-77, 1978
  23. Kleineidam S, Schuth C, Grathwohl P, Environ. Sci. Technol., 36, 4689, 2002
  24. Kwon SC, Song DI, Jeon YW, Sep. Sci. Technol., 33(13), 1981, 1998
  25. Lagas P, Chemosphere, 17, 205, 1988
  26. Lee JH, Song DI, Jeon YW, Sep. Sci. Technol., 32(12), 1975, 1997
  27. McGroddy S, Farrington JW, Gschwend P, Environ. Sci. Technol., 30, 172, 1996
  28. Nye JV, Guerin WF, Boyd SA, Environ. Sci. Technol., 28, 944, 1994
  29. Palmo M, Bhandari A, Environ. Sci. Technol., 39, 2143, 2000
  30. Radke CJ, Prausnitz JM, AIChE J., 18, 761, 1972
  31. Shin WS, Song DI, Geosciences J., 9, 249, 2005
  32. Song DI, Shin WS, Environ. Sci. Technol., 39, 1138, 2005
  33. Stapleton MG, Sparks DL, Dentel SK, Environ. Sci. Technol., 28, 2330, 1994
  34. Weber Jr WJ, Huang W, Environ. Sci. Technol., 30, 881, 1996
  35. Witthuhn B, Pernyeszi Klauth P, Vereecken H, Klumpp E, Colloids Surf. A: Physicochem. Eng. Asp., 265, 81, 2005
  36. Xing B, Pignatello JJ, Gigliotti B, Environ. Sci. Technol., 30, 2432, 1996
  37. Xu SH, Boyd SA, Langmuir, 11(7), 2508, 1995
  38. Yang WC, Shim WG, Lee JW, Moon H, Korean J. Chem. Eng., 20(5), 922, 2003
  39. Yen CY, Singer PC, J. Environ. Eng., 110, 976, 1984
  40. You CN, Liu JC, Water Sci. Technol., 33, 263, 1996