Issue
Korean Journal of Chemical Engineering,
Vol.22, No.5, 705-711, 2005
Effect of Surface Properties of Activated Carbons on Surfactant Adsorption Kinetics
This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. A linear relationship exists between the number of water molecules adsorbed onto each AC and the oxygen content determined elemental analysis and XPS. An inverse linear relationship exists between the plateau amount of dodecanoic acid anionic surfactant and the oxygen content on the surface of ACs. The surface charge on each AC’s surface had a linear relationship with the plateau amount of dodecanoic acid. A plug-flow heterogeneous surface diffusion model (PFHSDM) for a fixed-bed adsorption process was developed to describe the adsorption kinetics in a fixed-bed column. The model represents axially dispersed plug-flow, external mass transfer, adsorption equilibrium on the fluid-particle interface, and intraparticle diffusion. The larger molecular dimension of the dodecanoic acid as a more hydrophobic entity than octanoic acid led to a faster external mass transfer rate but a slower surface diffusion rate as estimated from the PFHSDM. The interaction between the organic moiety of surfactant and the AC surface chemistry such as surface oxygen content and surface charge contributes to the adsorption performance in both to the adsorption equilibrium and kinetics.
[References]
  1. Alcoa, "Alcoa Annual Report", www.alcoa.com.au, 1998
  2. Barton SS, Evans MJB, Holland J, Koresh JE, Carbon, 22, 265, 1984
  3. Baup S, Jaffre C, Wolbert D, LaPlanche A, Adsorption, 6, 219, 2000
  4. Boehm HP, Carbon, 32, 759, 1994
  5. Bandosz T, Carbon, 37, 483, 1999
  6. Carrott PJM, Sing KSW, Assessment of Microporosity, Elsevier, Amsterdam, 1988
  7. Considine R, Denoyel R, Pendleton P, Schumann R, Wong SH, Colloids Surf. A: Physicochem. Eng. Asp., 179, 271, 2001
  8. Garcia-Delgado RA, Cotoruelo LM, Rodriguez JJ, Sep. Sci. Technol., 27, 1065, 1992
  9. Hind AR, Bhargava SK, Grocott SC, Colloids Surf. A: Physicochem. Eng. Asp., 146, 359, 1999
  10. Hoeft CE, Zollars RL, J. Colloid Interface Sci., 177(1), 171, 1996
  11. Jaroniec M, Madey R, Physical Adsorption on Heterogeneous Solids, Elsevier, Amsterdam, 1988
  12. Jeong YO, Thermal Effects on Single-Well Chemical Tracer Tests for Measuring Residual Oil Saturation, Ph. D. Thesis, Houston University, Houston, U.S.A., 1989
  13. Kim JH, Park PW, Chung JK, Huh WW, Jeong YO, HWAHAK KONGHAK, 40(2), 169, 2002
  14. Kim JH, Numerical Simulation of Blast Furnace In-jected with Pulverized Coal and Fixed-bed Adsorption of Organic Acids by Activated Carbon in Heterogeneous Chemical Reaction Systems, Ph. D. Thesis, Pukyong National University, Korea, 2003
  15. Kim JH, Jeong YO, Pendleton P, J. Ind. Eng. Chem., 10(6), 1025, 2004
  16. Kim TY, Kim SJ, Cho SY, J. Ind. Eng. Chem., 10(2), 188, 2004
  17. Komiyama H, Smith JM, AIChE J., 20, 1110, 1974
  18. Li FS, Yuasa A, Ebie K, Azuma Y, J. Colloid Interface Sci., 262(2), 331, 2003
  19. Mathews AP, Weber WJ, Chem. Eng. Commun., 25, 157, 1984
  20. McKay G, Allen SJ, Mcconvey IF, Otterburn MS, J. Colloid Interface Sci., 80, 323, 1981
  21. McKay G, AIChE J., 31, 335, 1985
  22. McKay G, Bino MJ, Altememi A, Water Res., 20, 435, 1986
  23. McKay G, Bino MJ, Water Res., 22, 279, 1988
  24. Morris JC, Weber WJ, Removal of Biologically Resistant Pollutants from Wastewater by Adsorption, in First international conference on water pollution, 1962
  25. Muller G, Radke CJ, Prausnitz JM, J. Colloid Interface Sci., 103, 466, 1985
  26. Noll KE, Gouranis V, Hou WS, Adsorption Technology for Air and Water Pollution Control, Lewis Publishers, New York, 1992
  27. Park JW, Lee YW, Choi DK, Lee SS, J. Ind. Eng. Chem., 9(4), 381, 2003
  28. Pendleton P, Zettlemoyer AC, Micale FJ, Adsorption from Solution, Academic Press, London, 1983
  29. Pendleton P, Wong SH, Schumann R, Levay G, Denoyel R, Rouquerol J, Carbon, 35, 1141, 1997
  30. Pendleton P, Wu SH, J. Colloid Interface Sci., 266(2), 245, 2003
  31. Rodriguez-Reinoso F, Molina-Sabio M, Adv. Colloid Interface Sci., 76-77, 271, 1998
  32. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK, Pure Appl. Chem., 67, 1741, 1995
  33. Seader J, Henley M, Separation Process Principles, Wiley, New York, U.S.A, 1998
  34. Sircar S, Hufton JR, Adsorption, 6, 137, 2000
  35. Shim WG, Chaudhary DS, Vigneswaran S, Ngo HH, Lee JW, Moon H, Korean J. Chem. Eng., 21(1), 212, 2004
  36. Sontheimer H, Crittenden JC, Summers S, Activated Carbon for Water Treatment, AWWA Research Foundation, Karlsruhe, 1988
  37. Wakao H, Funazkri T, Chem. Eng. Sci., 33, 1375, 1978
  38. Wang ZM, Yamashita N, Wang ZX, Hoshinoo K, Kanoh H, J. Colloid Interface Sci., 276(1), 143, 2004
  39. Weber WJ, Smith JM, Environ. Sci. Technol., 21, 1040, 1987
  40. Wu H, The Influence of Activated Carbon Surface Chemistry and Physical properties and Solution Properties on Ionic Surfactant Adsorption from Dilute Solution, Ph.D. Thesis, University of South Australia, Adelaide, pp. 190, 2002
  41. Wu SH, Pendleton P, J. Colloid Interface Sci., 243(2), 306, 2001
  42. Yang RT, Gas Separation by Adsorption Processes, Imperial College, London, pp. 352, 1997
  43. Zettlemoyer AC, Siddiq M, Kovacs P, Micale FJ, Croat. Chem. Acta, 53, 319, 1980
  44. Zettlemoyer AC, Pendleton P, Micale FJ, Croat. Chem. Acta, 56, 633, 1983