Issue
Korean Journal of Chemical Engineering,
Vol.22, No.3, 452-456, 2005
Prediction of the Infinite-dilution Partial Molar Volumes of Organic Solutes in Supercritical Carbon Dioxide Using the Kirkwood-Buff Fluctuation Integral with the Hard Sphere Expansion (HSE) Theory
Two thermodynamic models were used to predict the infinite dilution partial molar volumes (PMVs) of organic solutes in supercritical carbon dioxide: (1) the Kirkwood Buff fluctuation integral with the hard sphere expansion (HSE) theory incorporated (KB-HSE fluctuation integral method) and (2) the Peng-Robinson equation of state with the classical mixing rule. While an equation of state only for pure supercritical carbon dioxide is needed in the KB-HSE fluctuation integral model, and thus, there is no need to know the critical properties of solutes, two molecular parameters (one size parameter σ12 and one dimensionless parameter α12) in the KB-HSE fluctuation integral model are determined to fit the experimental data published on the infinite dilution PMVs of solutes. The KB-HSE fluctuation integral method produced better results on the infinite dilution PMVs of eight organic solutes tested in this work than the Peng-Robinson equation of state with the classical mixing rule.
[References]
  1. Bader MSH, Gasem KAM, J. Supercrit. Fluids, 9(4), 244, 1996
  2. Bartle KD, Clifford AA, Shilstone GF, J. Supercrit. Fluids, 5, 220, 1992
  3. Bharath R, Inomata H, Arai K, Fluid Phase Equilib., 50, 315, 1989
  4. Brennecke JF, Eckert CA, AIChE J., 35, 1409, 1989
  5. Ben-Naim A, J. Chem. Phys., 67, 4884, 1977
  6. Camahan NF, Starling KE, J. Chem. Phys., 51, 635, 1969
  7. Chialvo AA, J. Phys. Chem., 97, 2740, 1993
  8. Cochran HD, Lee LL, Pfund DM, Fluid Phase Equilib., 34, 219, 1987
  9. Coutsikos P, Magoulas K, Tassios D, Cortesi A, Kikic I, J. Supercrit. Fluids, 11(1), 21, 1997
  10. Debenedetti PG, Chem. Eng. Sci., 42, 2203, 1987
  11. Foster NR, Macnaughton SJ, Chaplin RP, Wells PT, Ind. Eng. Chem. Res., 28, 2903, 1989
  12. Jeon YP, Roth M, Kwon YJ, J. Phys. Chem. B, 103(38), 8132, 1999
  13. Jeon YP, Roth M, Kwon YJ, J. Phys. Chem. A, 104(22), 5396, 2000
  14. Kim H, Lin HM, Chao KC, Ind. Eng. Chem. Fundam., 25, 75, 1986
  15. Kirkwood JG, Buff FP, J. Chem. Phys., 19, 774, 1951
  16. Kwon YJ, Lee JY, Kim KC, Korean J. Chem. Eng., 14(3), 184, 1997
  17. Kwon YJ, Mansoori GA, J. Supercrit. Fluids, 6, 173, 1993
  18. Levelt Sengers JMH, J. Supercrit. Fluids, 4, 215, 1991
  19. Liong KK, Foster NR, Yun SLJ, Ind. Eng. Chem. Res., 30, 569, 1991
  20. Liu HQ, Macedo EA, Ind. Eng. Chem. Res., 34(6), 2029, 1995
  21. Mansoori GA, Leland TW, J. Chem. Soc.-Faraday Trans., 68, 320, 1972
  22. O'Connell JP, Fluid Phase Equilib., 6, 21, 1981
  23. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59, 1976
  24. Prausnitz JM, Lichenthaler NR, Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1986
  25. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill Book Co., New York, 1987
  26. Schmitt WJ, Reid RC, J. Chem. Eng. Data, 31, 204, 1986
  27. Shin GS, Park JS, Kwon YJ, Korean J. Chem. Eng., 15(6), 603, 1998
  28. Shim JJ, Johnston KP, J. Phys. Chem., 95, 353, 1991