Issue
Korean Journal of Chemical Engineering,
Vol.22, No.3, 441-451, 2005
Simulation and Analysis of Extractive Distillation Process in a Valve Tray Column Using the Rate Based Model
Valve trays are becoming popular in the chemical process industries owing to their flexibility to handle a wide range of vapor throughputs. Using the rigorous rate based model, the importance of the non-equilibrium approach is demonstrated for a typical extractive distillation process in a Glitsch V-1 valve tray column. Simulation results based on an in-house developed code indicated that the rate based model predictions for a valve tray column operation showed significant differences relative to the equilibrium model. Even small errors in product purities translated into nonoptimal feed stage locations and inaccurate number of stages required. The counter-intuitive effect of high reflux ratio on separation is explained.
[References]
  1. Aspen Plus® Steady State Simulation Version 10.1-0, Aspen Technology Inc.
  2. Assabumrungrat S, Wongwattanasate D, Pavarajarn V, Praserthdam P, Arpornwichanop A, Goto S, Korean J. Chem. Eng., 21(6), 1139, 2004
  3. Cheny W, Kincaid D, Numerical Mathematics and Computing, 4th ed., Brooks/Cole Publishing Co., USA, 1999
  4. Higler A, Chande R, Taylor R, Baur R, Krishna R, Comput. Chem. Eng., 28(10), 2021, 2004
  5. Hoffmann A, Noeres C, Gorak A, Chem. Eng. Process., 43, 383, 2004
  6. Kenig EY, Gorak A, Pyhalahti A, Jakobsson K, Aittamaa J, Sundmacher K, AIChE J., 50(2), 322, 2004
  7. Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098, 2004
  8. King CJ, Separation Processes, McGraw-Hill Book Company, New York, 1980
  9. Kister HZ, Distillation Design, McGraw Hill, New York, 1992
  10. Kloker M, Kenig EY, Schmitt M, Althaus K, Schoenmakers H, Markusse AP, Kwant G, Can. J. Chem. Eng., 81(3-4), 725, 2003
  11. Lee YS, Kim MG, Ha DM, Oda A, Ito C, Aragaki T, Mori H, Korean J. Chem. Eng., 14(5), 321, 1997
  12. Mortaheb HR, Kosuge H, Chem. Eng. Process., 43, 317, 2004
  13. Noeres C, Dadhe K, Gesthuisen R, Engell S, Gorak A, Chem. Eng. Process., 43, 421, 2004
  14. Peng JJ, Edgar TF, Eldridge RB, Chem. Eng. Sci., 58(12), 2671, 2003
  15. Powers MF, Vickery DJ, Arehole R, Taylor R, Comput. Chem. Eng., 12, 1229, 1988
  16. Pyhalahti A, Jakobsson K, Ind. Eng. Chem. Res., 42(24), 6188, 2003
  17. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, 1988
  18. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W, Object-Oriented Modeling and Design, Prentice-Hall of India, New Delhi, 1997
  19. Sanpui D, Khanna A, Korean J. Chem. Eng., 20(4), 609, 2003
  20. Seader EJ, Henley JD, Separation Process Principles, John Wiley, Singapore, 1998
  21. Scheffe RD, Weiland RH, Ind. Eng. Chem. Res., 26, 228, 1987
  22. Springer PAM, van der Molen S, Krishna R, Comput. Chem. Eng., 26(9), 1265, 2002
  23. Taylor R, Krishna R, Multi-component Mass Transfer, John Wiley & Sons, Inc., New York, 1993
  24. Toor HL, AIChE J., 3, 198, 1957
  25. Toor HL, AIChE J., 10, 545, 1964
  26. Vadapalli A, Seader JD, Comput. Chem. Eng., 25(2-3), 445, 2001
  27. Wang JC, Henke GE, Hydrocarb. Process., 45(8), 155, 1966