Issue
Korean Journal of Chemical Engineering,
Vol.22, No.1, 133-141, 2005
Ambiguity and Non-uniqueness in Nonequilibrium Thermodynamics
The ambiguity and non-uniqueness of splitting fluxes and forces from the entropy generation equation raise confusion in nonequilibrium thermodynamics and misunderstanding of the Onsager reciprocal relationships. However, they provide an opportunity to select different sets of fluxes and forces that represent a given nonequilibrium process. By symmetrization of the phenomenological coefficient matrix, one can always find a proper set of fluxes and forces. This paper shows how the implementation of the transformation theory can produce several different sets of fluxes and forces through many engineering examples such as ideal gas permeation through a membrane, reverse osmosis, nanofiltration, ultrafiltration, and simultaneous heat and mass transfer. Also, guidance is presented on how to study nonequilibrium thermodynamics for a given irreversible process together with a short summary of the principles of nonequilibrium thermodynamics. These contain the entropy generation equation, linear relations of fluxes and all generalized forces including the Curie theorem, and the Onsager reciprocal relationships.
[References]
  1. Baranowski B, J. Membr. Sci., 57, 119, 1991
  2. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena John Wiley & Sons, New York, 19, 81, 537, 2002
  3. DeGroot SR, Introduction to Thermodynamics of Irreversible Processes, North Holland, Amsterdam, 94, 1961
  4. DeGroot SR, Mazur P, Non-Equilibrium Thermodynamics, John Wiley & Sons, New York, 20, 27, 1962
  5. Denn MM, Process Fluid Mechanics, Prentice-Hall, New Jersey, 155, 1980
  6. Fitts DD, Nonequilibrium Thermodynamics, McGraw-Hill, New York, 9, 31, 41, 1962
  7. Hwang ST, AIChE J., 50, 862, 2004
  8. Katchalsky A, Curran PF, Nonequilibrium Thermodynamics, Harvard University Press, Cambridge, MA, 113, 1975
  9. Kedem O, J. Membr. Sci., 47, 277, 1989
  10. Kondepudi D, Prigogine I, Modern Thermodynamics, John Wiley & Sons, New York, 344, 1998
  11. Narebska A, Koter S, J. Membr. Sci., 30, 141, 1987
  12. Narebska A, Koter S, Pol. J. Chem., 71, 1643, 1997
  13. Narebska A, Koter S, Kujawski W, J. Membr. Sci., 25, 153, 1985
  14. Narebska A, Koter S, Warszawski A, Le TT, J. Membr. Sci., 106(1-2), 39, 1995
  15. Narebska A, Warszawski A, J. Membr. Sci., 88(2-3), 167, 1994
  16. Narebska A, Kujawski W, Koter S, J. Membr. Sci., 30, 125, 1987
  17. Narebska A, Warszawski A, Koter S, Le TT, J. Membr. Sci., 106(1-2), 25, 1995
  18. Onsager L, Phys. Rev., 37, 405, 1931
  19. Onsager L, Phys. Rev., 38, 2265, 1931
  20. Prigogine I, Etude Thermodynamique des Prosseus Irreversible, Desoer, Liege, 1947
  21. Prigogine I, Introduction to Thermodynamics of Irreversible Processes, John Wiley & Sons, New York, 40, 1967
  22. Rizvi SA, Zaidi SB, J. Membr. Sci., 29, 259, 1986
  23. Whitaker S, Introduction to Fluid Mechanics, Prentice-Hall, New Jersey, 133, 1968