Issue
Korean Journal of Chemical Engineering,
Vol.22, No.1, 46-51, 2005
Structural and Electrochemical Characteristics of Li0.7[Li1/6Mn5/6]O2 Synthesized using Sol-Gel Method
Layered O2-lithium manganese oxide (O2-Li0.7[Li1/6Mn5/6]O2) was prepared by ion-exchange of P2-sodium manganese oxide (P2-Na0.7[Li1/6Mn5/6]O2). P2-Na0.7[Li1/6Mn5/6]O2 precursor was first synthesized by using a sol-gel method, and then O2- Li0.7[Li1/6Mn5/6]O2 was produced by an ion exchange of Li for Na in the P2-Na0.7[Li1/6Mn5/6]O2 precursor. Structural and electrochemical analyses suggested that good quality O2-Li0.7[Li1/6Mn5/6]O2 was prepared from P2-Na0.7[Li1/6Mn5/6]O2 synthesized at 800 oC for 10 h using glycolic acid as a chelating agent. During the cycle, the discharge profile of the synthesized samples showed two plateaus at around 4 and 3 V, respectively, with a steep slope between the two plateaus. The discharge curve at 3 V escalated with an increase in the cycle number, presenting a phase transition from a layered to a spinel like structure. The sample prepared at 800 oC for 10 h using glycolic acid delivered a discharge capacity of 187 mAh/g with small capacity fading.
[References]
  1. Armstrong AR, Robertson AD, Bruce PG, Electrochim. Acta, 45(1-2), 285, 1999
  2. Balsys J, Davis RL, Solid State Ion., 93, 279, 1996
  3. Chen DH, He XR, Mater. Res. Bull., 36(7-8), 1369, 2001
  4. Delmas C, Braconnier JJ, Hagenmuller P, Mater. Res. Bull., 17, 117, 1982
  5. Delmas C, Braconnier JJ, Maazaz A, Hagenmuller P, Rev. Chim. Miner., 19, 343, 1982
  6. Franger S, Bach S, Pereira-Ramos JP, Baffier N, J. Electrochem. Soc., 147(9), 3226, 2000
  7. Guyomard D, Tarascon JM, Solid State Ion., 69(3-4), 222, 1994
  8. Jang DH, Oh SM, J. Electrochem. Soc., 144(10), 3342, 1997
  9. Jang DH, Shin YJ, Oh SM, J. Electrochem. Soc., 143(7), 2204, 1996
  10. Jeong YU, Manthiram A, Electrochem. Solid State Lett., 2, 421, 1999
  11. Kim J, Manthiram A, Electrochem. Solid State Lett., 1, 207, 1998
  12. Lu Z, Dahn JR, Chem. Mater., 13, 1252, 2001
  13. Lu Z, Dahn JR, Chem. Mater., 13, 2078, 2001
  14. Lu Z, Donaberger RA, Dahn JR, Chem. Mater., 12, 3583, 2000
  15. Ohuzuk T, Kitagawa M, Hirai T, J. Electrochem. Soc., 137, 769, 1990
  16. Parant JP, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P, J. Solid State Chem., 3, 1, 1971
  17. Park KS, Cho MH, Jin SJ, Song CH, Nahm KS, Korean J. Chem. Eng., 21(5), 983, 2004
  18. Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19, 791, 2004
  19. Park SH, Park KS, Moon SS, Sun YK, Nahm KS, J. Power Sources, 92(1-2), 244, 2001
  20. Paulsen JM, Dahn JR, J. Electrochem. Soc., 147(7), 2478, 2000
  21. Paulsen JM, Dahn JR, Solid State Ion., 126(1-2), 3, 1999
  22. Paulsen JM, Larcher D, Dahn JR, J. Electrochem. Soc., 147(8), 2862, 2000
  23. Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 146(10), 3560, 1999
  24. Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 147(3), 861, 2000
  25. Quine TE, Duncan MJ, Armstrong AR, Robertson AD, Bruce PG, J. Mater. Chem., 10, 2838, 2000
  26. Sun YK, Jeon YS, Lee HJ, Electrochem. Solid State Lett., 3, 7, 2000
  27. Thackeray MM, Prog. Solid State Chem., 25, 1, 1997