Issue
Korean Journal of Chemical Engineering,
Vol.21, No.6, 1250-1255, 2004
Axial Gas Phase Dispersion in a Molten Salt Oxidation Reactor
Gas phase axial dispersion characteristics were determined in a molten salt oxidation reactor (air-molten sodium carbonate salt two phase system). The effects of the gas velocity (0.05-0.22 m/s) and molten salt bed temperature (870-970 ℃) on the gas phase axial dispersion coefficient were studied. The amount of axial gas-phase dispersion was experimentally evaluated by means of residence time distribution (RTD) experiments using an inert gas tracer (CO). The experimentally determined RTD curves were interpreted by using the axial dispersions model, which proved to be a suitable means of describing the axial mixing in the gas phase. The results indicated that the axial dispersion coefficients exhibited an asymptotic value with increasing gas velocity due to the plug-flow like behavior in the higher gas velocity. Temperature had positive effects on the gas phase dispersion. The effect of the temperature on the dispersion intensity was interpreted in terms of the liquid circulation velocity using the drift-flux model.
[References]
  1. Alam M, Kamath S, Environ. Sci. Technol., 32, 3986, 1998
  2. Bell JT, Haas PA, Rudolph JC, Sep. Sci. Technol., 30(7-9), 1755, 1995
  3. Cho HI, Chung CH, Han GY, Ahn GR, Kong JS, Korean J. Chem. Eng., 17(3), 292, 2000
  4. Cho YJ, Yang HC, Eun HC, You JH, Kim JH, HWAHAK KONGHAK, 41(5), 643, 2003
  5. Deckwer WD, Burckhart R, Zoll G, Chem. Eng. Sci., 29, 2177, 1974
  6. Fan LS, "Gs-Liquid-Solid Fluidization Engineering," Butterworths, MA, 1989
  7. Field RW, Davidson JF, Trans. Inst. Chem. Engrs., 58, 228, 1980
  8. Hsu PC, Foster KG, Ford TD, Wallman PH, Watkins E, Pruneda CO, Adamson MG, Waste Manage., 20, 363, 2000
  9. Joshi JB, Chem. Eng. J., 24, 213, 1982
  10. Joshi JB, Sharma MM, Trans. Inst. Chem. Eng., 57, 244, 1979
  11. Kang Y, Kim SD, Ind. Eng. Chem. Process Des. Dev., 25, 717, 1986
  12. Kang Y, Lim WM, Kim SD, HWAHAK KONGHAK, 25(5), 460, 1987
  13. Kantak MV, Hesketh RP, Kelkar BG, Chem. Eng. J., 59, 91, 1995
  14. Kim J, Han G, Yi C, Korean J. Chem. Eng., 19(3), 491, 2002
  15. Kim SJ, Cho YJ, Lee CG, Kang Y, Kim SD, Korean J. Chem. Eng., 19(1), 175, 2002
  16. Lee JE, Choi WS, Lee JK, Korean J. Chem. Eng., 20(5), 942, 2003
  17. Lin TJ, Tsuchiya K, Fan LS, AIChE J., 44(3), 545, 1998
  18. Mangartz KH, Pilhofer TH, Chem. Eng. Sci., 36, 1969, 1981
  19. Marco M, Dieter M, Chem. Eng. Sci., 50, 2107, 1994
  20. Park SH, Kim SD, Korean J. Chem. Eng., 20(1), 128, 2003
  21. Pruned CO, Watkins BE, Upadhye RS, "Recent Advances in the Molten Salt Destruction of Energetic Materials," JANNAF Propulsion and Subcommittee Joint Meeting, December, FL, 1995
  22. Runjun Z, Xinzhen J, Baozhang L, Yong Z, Laiqi Z, Ind. Eng. Chem. Res., 27, 1910, 1988
  23. Shetty SA, Kantak MV, Kelkar BG, AIChE J., 38, 1013, 1992
  24. Veera UP, Kataria KL, Joshi JB, Chem. Eng. J., 84(3), 247, 2001
  25. Vial C, Poncin S, Wild G, Midoux N, Chem. Eng. Process., 40(2), 135, 2001
  26. Wachi S, Nojima Y, Chem. Eng. Sci., 45, 901, 1990
  27. Yang HC, Cho YJ, Yun JS, Kim JH, Can. J. Chem. Eng., 81, 713, 2003
  28. Zahradnik J, Fialova M, Chem. Eng. Sci., 51(10), 2491, 1996
  29. Zubar N, Findlay J, Trans. ASME, J. Heat Transfer Ser., C87, 453, 1965