Issue
Korean Journal of Chemical Engineering,
Vol.21, No.5, 983-988, 2004
The Effects of Ni doping on the Performance of 03-Lithium Manganese Oxide Material
Li0.7[Li1/6Mn5/6]O2 and Li0.7[Li1/12Ni1/12Mn5/6]O2 powders were synthesized by a sol-gel method. The powders had a typically rhombohedral layered O3 structure. Both the samples were nanometer-sized powders and the size of Li0.7[Li1/12Ni1/12Mn5/6]O2 was smaller than that of Li0.7[Li1/6Mn5/6]O2. The discharge curve shape of both the sample electrodes was almost equal to that of the layered structure. However, the electrode materials were transferred from layered to spinel structures with increasing the cycle number. Li/Li0.7[Li1/6Mn5/6O2 and Li0.7[Li1/12Ni1/12Mn5/6]O2 after the 45th cycle were 174 and 221 mAh/g, respectively, corresponding to the retentions of 67% and 93%. The nanostructure of the synthesized powders seems to result in high initial discharge capacity as well as in the suppression of the discharge capacity fading by providing high surface area needed for Li ion reaction. In Nidoped-Li0.7[Li1/12Ni1/12Mn5/6]O2, the capacity fading was reduced by suppressing the oxidation state of Mn from 4+ to 3+ due to the role of Ni ion doped.
[References]
  1. Ammundsen B, Paulsen J, Adv. Mater., 13, 943, 2001
  2. Liu W, Farrington GC, Chaput F, Dunn B, J. Electrochem. Soc., 143(3), 879, 1996
  3. Armstrong AR, Huang H, Jennings RA, Bruce PG, J. Mater. Chem., 8, 255, 1998
  4. Armstrong AR, Paterson AJ, Robertson AD, Bruce PG, Chem. Mater., 14, 710, 2002
  5. Armstrong AR, Robertson AD, Gitzendanner R, Bruce PG, J. Solid State Chem., 145, 549, 1999
  6. Bruce PG, Armstrong AR, Gitzendanner RL, J. Mater. Chem., 9, 193, 1999
  7. Bruce PG, Armstrong AR, Gitzendanner RL, J. Mater. Chem., 9, 193, 1999
  8. Chiang YM, Wang H, Jang YI, Chem. Mater., 13, 53, 2001
  9. Choi S, Manthiram A, J. Electrochem. Soc., 149(9), A1157, 2002
  10. Croguennec L, Deniard P, Brec R, J. Electrochem. Soc., 144(10), 3323, 1997
  11. Davidson IJ, McMillan RJ, Greedan JE, J. Power Sources, 54, 232, 1995
  12. Davidson IJ, McMillan RJ, Slegr H, Luan B, Kargina I, Murray JJ, Swainson IP, J. Power Sources, 82, 406, 1999
  13. Holzapel M, Haak C, Ott JA, Solid State Chemistry, 156, 470, 2001
  14. Kang SG, Kang SY, Ryu KS, Chang SH, Solid State Ion., 120(1-4), 155, 1999
  15. Lee YS, Sun YK, Nahm KS, Solid State Ion., 118(1-2), 159, 1999
  16. Lide DR, "CRC HANDBOOK of CHEMISTRY and PHYSICS," 74thEdition, Boca Raton, FL.
  17. Lu Z, Dahn JR, J. Ecs., 149, A815, 2002
  18. Lu Z, Donaberger RA, Dahn JR, Chem. Mater., 3583, 12, 2000
  19. Park KS, Cho MH, Park SH, Nahm KS, Sun YK, Lee YS, Yoshio M, Electrochim. Acta, 47(18), 2937, 2002
  20. Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19(5), 791, 2002
  21. Park SH, Park KS, Sun YK, Nahm KS, Lee YS, Yoshio M, Electrochim. Acta, 46(8), 1215, 2001
  22. Park SH, Sun YK, Park KS, Nahm KS, Lee YS, Yoshio M, Electrochim. Acta, 47(11), 1721, 2002
  23. Paulsen JM, Dahn JR, J. Electrochem. Soc., 2478, 147, 2000
  24. Paulsen JM, Larcher D, Dahn JR, J. Electrochem. Soc., 2862, 147, 2000
  25. Paulsen JM, Mueller-Neuhaus JR, Dahn JR, J. Electrochem. Soc., 147(2), 508, 2000
  26. Huang H, Vincent CA, Bruce PG, J. Electrochem. Soc., 146(10), 3649, 1999
  27. Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 3560, 146, 1999
  28. Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 147(3), 861, 2000
  29. Robertson AD, Armstrong AR, Bruce PG, Chem. Mater., 13, 2380, 2001
  30. Sun YK, Kim DW, Jin SH, Hyung YE, Moon SI, Park DK, Korean J. Chem. Eng., 15(1), 64, 1998
  31. Sun YK, Kim DW, Korean J. Chem. Eng., 16(4), 449, 1999
  32. Sun YK, Nahm KS, Korean J. Chem. Eng., 19(4), 718, 2002
  33. Thakeray MM, Prog. Solid State Chem., 25, 1, 1997
  34. Wang H, Jang YI, Chiang YM, Electrochem. Solid State Lett., 2, 490, 1999