Issue
Korean Journal of Chemical Engineering,
Vol.21, No.5, 950-955, 2004
Adsorption Behavior of NO and CO and Their Reaction over Cobalt on Zeolite Beta
Adsorption behavior of NO and CO as well as their reaction was investigated on cobalt supported zeolite beta (Co/BEA) prepared by solid-state ion exchange (SSIE) and by impregnation (IMP). By temperature programmed desorption (TPD), two NO desorption peaks at 100 and 260℃ were observed over both SSIE and IMP catalysts with complete desorption after 450℃. CO desorbed from SSIE catalyst between 50 and 200℃. In the same temperature interval negligible CO2 desorption was observed, most likely due to reaction of CO with trace of cobalt oxides. Over IMP catalysts, desorption of CO2 was found mainly at 500℃. By comparing CO TPD profiles from physical mixtures of cobalt oxides and HBEA, SSIE catalysts most likely contained cobalt cations in zeolite exchange position while IMP catalysts had cobalt in oxidic forms. The SSIE catalysts were active for NO reduction at 400 and 500℃ with a maximum conversion at 500℃. However, the activity in the presence of water and oxygen was low. Water might inhibit the reaction by blocking active sites for NO and CO, while oxygen reacted with CO to form carbon dioxide. The activity of SSIE was better than IMP catalyst.
[References]
  1. Armor JN, Catal. Today, 26(2), 147, 1995
  2. Baerlocher Ch, McCusker LB, "Database of Zeolite Structures," http://www.iza-structure.org/databases/
  3. Camblor MA, Mifsud A, Perez-Pariente J, Zeolites, 11, 792, 1991
  4. Camblor MA, Perez-Pariente J, Zeolites, 11, 202, 1991
  5. Campa MC, Derossi S, Ferraris G, Indovina V, Appl. Catal. B: Environ., 8(3), 315, 1996
  6. Di Monte R, Fornasiero P, Kaspar J, Rumori P, Gubitosa G, Graziani M, Appl. Catal. B: Environ., 24(3-4), 157, 2000
  7. Hadjiivanov KI, Catal. Rev.-Sci. Eng., 42(1-2), 71, 2000
  8. Kim MH, Nam IS, Korean J. Chem. Eng., 18(5), 725, 2001
  9. Kinger G, Lugstein A, Swagera R, Ebel M, Jentys A, Vinek H, Microporous Mesoporous Mater., 39, 307, 2000
  10. Kondarides DI, Chafik T, Verykios XE, J. Catal., 191(1), 147, 2000
  11. Konsolakis M, Yentekakis IV, Palermo A, Lambert RM, Appl. Catal. B: Environ., 33(4), 293, 2001
  12. Kunkeler PJ, Zuurdeeg BJ, van der Waal JC, van Bokhoven JA, Koningsberger DC, van Bekkum H, J. Catal., 180(2), 234, 1998
  13. Ohtsuka H, Tabata T, Okada O, Sabatino LMF, Bellussi G, Catal. Today, 42(1-2), 45, 1998
  14. Oumi Y, Mizuno R, Azuma K, Nawata S, Fukushima T, Uozumi T, Sano T, Microporous Mesoporous Mater., 49, 103, 2001
  15. Park YS, Lee WY, Rhee HK, Sung BP, Lee HI, Korean J. Chem. Eng., 3(2), 165, 1986
  16. Pisanu AS, Gigola CE, Appl. Catal. B: Environ., 20(3), 179, 1999
  17. Seyedeyn-Azad F, Zhang DK, Catal. Today, 68(1-3), 161, 2001
  18. Tabata T, Ohtsuka H, Sabatino LMF, Bellussi G, Microporous Mesoporous Mater., 21, 517, 1998
  19. Thormahlen P, Skoglundh M, Fridell E, Andersson B, J. Catal., 188(2), 300, 1999
  20. Yahiro H, Iwamoto M, Appl. Catal. A: Gen., 222(1-2), 163, 2001
  21. Zhu CZ, Lee CW, Chong PJ, Zeolites, 17, 483, 1996