Issue
Korean Journal of Chemical Engineering,
Vol.21, No.5, 921-928, 2004
Microstructure and Phase Behavior of Concentrated Silica Particle Suspensions
Dispersion stability and microstructural transition of colloidal silica suspensions were examined by rheological measurements under either steady simple shear or oscillatory flow. Monodisperse silica particles were prepared by the so-called modified Stober method and were stabilized by either steric or electrostatic repulsive force. Depending upon the methods of stabilization, the suspension showed hard-sphere or soft-sphere response. In particular, silica suspensions exhibited hardsphere response when the silica spheres coated with 3-(trimethoxysilyl)propyl methacrylate (MPTS;CH3O)3Si(CH2)3OCOC(CH3)=CH2) were dispersed in a refractive-index matching solvent, tetrahydrofurfuryl alcohol. On the other hand, silica particles in aqueous media behaved like soft spheres with long-range elec-trostatic repulsive interactions when they were coated with steric layer of aminosilane coupling agent, N-[3-(trimethoxysilyl)propyl]ethylenediamine((CH3O)3Si(CH2)3NHCH2CH2NH2). In this case, the electrostatic repulsion or equivalently the softness of the silica spheres was contorlled by the ionic strength using a symmetric salt KCI. Both the hardsphere and soft-sphere suspensions showed stable shear-thinning behavior without experiencing shear-induced flocculation. Moreover, the oscillatory shear rheology. showed that the electrostatically stabilized soft-sphere suspensions underwent a microstuctural transition from liquid-like to solid-like structure when either the particle loading increased or the ionic strength was recuced.
[References]
  1. Barnes HA, Hutton JF, Walters K, "An Introduction to Rheology," Elsevier Science Publishers, New York, USA, 1989
  2. Barnes HA, J. Rheol., 33, 329, 1989
  3. Bogush GH, Tracy MA, Zukoski CG, J. Non-Cryst. Solids, 104, 95, 1988
  4. Brady JF, Chem. Eng. Sci., 56(9), 2921, 2001
  5. Chen LB, Ackerson BJ, Zukoski CF, J. Rheol., 38(2), 193, 1994
  6. Chow MK, Zukoski CF, J. Rheol., 39(1), 33, 1995
  7. Chow MK, Zukoski CF, J. Rheol., 39(1), 15, 1995
  8. Fagan ME, Zukoski CF, J. Rheol., 41(2), 373, 1997
  9. Foss DR, Brady JF, J. Fluid Mech., 407, 167, 2000
  10. Franks GV, Zhou ZW, Duin NJ, Boger DV, J. Rheol., 44(4), 759, 2000
  11. Gast AP, Russel WB, Phys. Today, 51(12), 24, 1998
  12. Kose A, Ozaka M, Takano K, Kobayashi Y, Hachisu S, J. Colloid Interface Sci., 44, 330, 1973
  13. Kose A, Hachisu S, J. Colloid Interface Sci., 55, 487, 1976
  14. Larson RG, "The Structure and Rheology of Complex Fluids," Oxford University Press, New York, USA, 1999
  15. Laun HM, Bung R, Hess S, Loose W, Hess O, Hahn K, Hadicke E, Hingmann R, Schmidt F, Lindner P, J. Rheol., 36, 743, 1992
  16. Lee JD, Yang SM, J. Colloid Interface Sci., 205(2), 397, 1998
  17. Lee JD, So JH, Yang SM, J. Rheol., 43(5), 1117, 1999
  18. Lewis JA, J. Am. Ceram. Soc., 83, 2341, 2000
  19. Oh MH, So JH, Lee JD, Yang SM, Korean J. Chem. Eng., 16(4), 532, 1999
  20. Perez MQ, Femandez JC, Alvarez RH, Adv. Colloid Interface Sci., 95, 295, 2002
  21. Philipse AP, Vrij A, J. Colloid Interface Sci., 128, 121, 1989
  22. Quemada D, Berli C, Adv. Colloid Interface Sci., 98, 51, 2002
  23. Russel WB, Saville DA, Schowalter WR, "Colloidal Dispersion," Cambridge University Press, New York, USA, 1989
  24. So JH, Bae SH, Yang SM, Kim DH, Korean J. Chem. Eng., 18(4), 547, 2001
  25. So JH, Oh MH, Lee JD, Yang SM, J. Chem. Eng. Jpn., 34(2), 262, 2001
  26. So JH, Yang SM, Hyun JC, Chem. Eng. Sci., 56(9), 2967, 2001
  27. So JH, Yang SM, Kim C, Hyun JC, Colloids Surf. A: Physicochem. Eng. Asp., 190, 89, 2001
  28. Stavov V, Zhdanov V, Meireles M, Molle C, Adv. Colloid Interface Sci., 96, 279, 2002
  29. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62, 1968
  30. Tadros TF, Adv. Colloid Interface Sci., 68, 97, 1996