Issue
Korean Journal of Chemical Engineering,
Vol.20, No.5, 934-941, 2003
Effect of Evaporation Temperature on the Crystalline Properties of Solution-Cast Films of Poly(vinylidene fluoride)s
The crystalline properties of poly(vinylidene fluoride) (PVdF) and its copolymer films, prepared from the solvent (N-methyl-2-pyrrolidone) evaporation at different temperatures and subsequent slow cooling to ambient temperature, were investigated by using polarized optical microscopy, differential scanning calorimetry, wide-angle Xray diffractometry, and Fourier-transform infrared spectroscopy. The results can provide helpful data for determining the optimal processing conditions of PVdFs as the polymer binder materials in making the electrodes of rechargeable lithium batteries. The morphology analysis gives useful information that the residual solvent remaining after the evaporation shows distinguishable amounts with respect to the temperature regions dividing by the crystallization (Tc) and melting (Tm) points of original PVdF samples. It is also proved that smallest spherulitic state coexisting with dominant α- and minor γ-phase crystals, simultaneously showing the lowest heat of fusion (e.g., the lowest crystallinity), can be obtained when the solvent is evaporated at a temperature between Tc and Tm. Letting the minor γ-phase crystals exist by controlling the evaporation temperature like this can be one of the best drying (evaporation) conditions of PVdFcontaining slurry in lithium rechargeable battery system.
[References]
  1. Al-Raheil IA, Qudah AM, Polym. Int., 41, 323, 1996
  2. Benedetti E, Catanorchi S, D'Alessio A, Moggi G, Vergamini P, Pracella M, Ciardelli F, Polym. Int., 41, 35, 1996
  3. Bodhane SP, Shirodkar VS, J. Appl. Polym. Sci., 64(2), 225, 1997
  4. Eriguchi T, Kamiya H, Endo E, (Asahi Glass Co.), Jpn. Patent, 1999-354163 (disclosed), 1999
  5. Gregorio R, Cestari M, J. Polym. Sci. B: Polym. Phys., 32(5), 859, 1994
  6. Gregorio R, Ueno EM, J. Mater. Sci., 34(18), 4489, 1999
  7. Ito S, Murata T, Hasegawa M, Bito Y, Toyoguchi Y, (Matsushita Electric Co.), U.S. Patent, 5,629,109, 1997
  8. Itou T, Teraji K, Yoshinaga N, Harada S, Neguro K, Mori K, (Sanyo Electric Co.), U.S. Patent, 5,380,606, 1995
  9. Kita F, Higashiguchi M, Murakami K, Kawakami A, (Hitachi Maxell Ltd.), U.S. Patent, 5,691,084, 1997
  10. Koschmieder EL, "Benard Cells and Taylor Vortices," Cambridge University Press, 1993
  11. Laroche G, Lafrance CP, Prud'homme RE, Guidoin R, J. Biomed. Mater. Res., 39, 184, 1998
  12. Lovinger AJ, J. Polym. Sci. B: Polym. Phys., 18, 793, 1980
  13. Lovinger AJ, "Poly(vinylidene fluoride)," Developments in Crystalline Polymers, Basset, D.C., ed., Vol. 1, Applied Science Pub., Chap. 5, 1981
  14. Mal S, Nandi AK, Langmuir, 14(9), 2238, 1998
  15. Marand HL, Stein RS, Stack GM, J. Polym. Sci. B: Polym. Phys., 26, 1361, 1988
  16. Omaru A, Nagamine M, Nakajima N, (Sony Corp.), U.S. Patent, 5,451,477, 1995
  17. Prest WM, Luca DJ, J. Appl. Phys., 49, 5042, 1978
  18. Rosenberg Y, Sigmann A, Narkis M, Shkolnik S, J. Appl. Polym. Sci., 43, 535, 1991
  19. Sajkiewicz P, Eur. Polym. J., 35, 1581, 1999
  20. Sato Y, Wada R, Tazaki M, Okabe M, Nihon Kagaku Kaishi, 481, 1998
  21. Sugawara S, "Polymer Binder in Lithium-ion Rechargeable Battery," Advanced Technologies for Polymer Battery, Oyama, N., ed., CMC Press, Chap. 6, 1998
  22. Tazaki M, Wada R, Okabe M, Homma T, J. Appl. Polym. Sci., 65(8), 1517, 1997
  23. Voice AM, Davies GR, Ward IM, Polym. Gels Networks, 5, 123, 1997