Issue
Korean Journal of Chemical Engineering,
Vol.20, No.3, 566-571, 2003
Low Cost Growth Route for Single-walled Carbon Nanotubes from Decomposition of Acetylene over Magnesia Supported Fe-Mo Catalyst
A large amount of single wall carbon nanotubes (SWNTs) was successfully produced by thermal decomposition of C2H2 at 800 ℃ over magnesia supported Fe-Mo bimetallic catalysts in a tubular flow reactor under an atmosphere of hydrogen flow. The growth density of SWNTs increased with increasing the weight percent of the catalyst metals (wt% ratio of two metals: 50 : 50) supported on magnesia (MgO) from 5 to 30 wt%. The yield of SWNTs reached 144.3% over 30 wt% metal-loaded catalyst. Raman measurements showed the growth of bundle type SWNTs with diameters ranging from 0.81 to 1.96 nm. The growth of SWNTs was also identified by thermal gravimetric analysis (TGA) and Raman spectroscopy.
[References]
  1. Alvarez EW, Kitiyanan B, Borgna A, Resasco ED, Carbon, 39, 547, 2001
  2. Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC, Phys. Rev. Lett., 80, 3779, 1998
  3. Bethune SD, Kiang HC, deVires SM, Gorman G, Savoy R, Vazquez J, Beyers R, Nature, 363, 605, 1993
  4. Chapelle DLLM, Lefrant S, Journet C, Maser W, Bernier P, Loiseau A, Carbon, 36, 705, 1998
  5. Colomer JF, Stephan C, Lefrant S, Tendeloo VG, Willems I, Konya Z, Fonseca A, Laurent C, Nagy BJ, Chem. Phys. Lett., 317, 83, 2000
  6. Cowley YJM, Nikollaev P, Thess A, Smalley ER, Chem. Phys. Lett., 265, 379, 1997
  7. Dai H, Rinzel GA, Nikolaev P, Thess A, Colbert TD, Smalley ER, Chem. Phys. Lett., 260, 471, 1996
  8. Eklund PC, Holden JM, Jishi RA, Carbon, 33(7), 959, 1995
  9. Guo T, Nikolaev P, Thess A, Colbert TD, Smalley ER, Chem. Phys. Lett., 243, 49, 1995
  10. Hafner HJ, Bronikowski JM, Azamian RB, Nikolaev P, Rinzler GA, Colbert TD, Smith AK, Smalley ER, Chem. Phys. Lett., 269, 195, 1998
  11. Hernadi K, Fonseca A, Nagy BJ, Bernaerts D, Lucas AA, Carbon, 34(10), 1249, 1996
  12. Iijima S, Ichihashi T, Nature, 363, 603, 1993
  13. Kibria AKMF, Mo YH, Nahm KS, Catal. Lett., 71(3-4), 229, 2001
  14. Fazle Kibria AKM, Mo YH, Yun MH, Kim MJ, Nahm KS, Korean J. Chem. Eng., 18(2), 208, 2001
  15. Kitiyanan B, Alvarez EW, Harwell HJ, Resasco ED, Chem. Phys. Lett., 317, 497, 2000
  16. Kuzmany H, Burger B, Thess A, Smalley RE, Carbon, 36(5-6), 709, 1998
  17. Mintmire WJ, Dunlap IB, White TC, Phys. Rev. Lett., 68(5), 631, 1992
  18. Mo YH, Kibria AKMF, Nahm KS, Synth. Met., 122, 443, 2001
  19. Park YS, Kim KS, Jeong HJ, Kim WS, Moon JM, An KH, Bae DJ, Lee YS, Park GS, Lee YH, Synth. Met., 126, 245, 2002
  20. Peigney A, Laurent C, Dobigeon F, Rousset A, J. Mater. Res., 12(3), 613, 1997
  21. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS, Science, 275(5297), 187, 1997
  22. Saito S, Science, 278(5335), 77, 1997
  23. Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue TK, Zhang SL, J. Phys. Chem. Solids, 61, 1031, 2000
  24. Tang S, Zhong XZ, Sun L, Liu L, Lin J, Shen XZ, Tan LK, Chem. Phys. Lett., 350, 19, 2001
  25. Wong EW, Sheehan PE, Lieber CM, Science, 277(5334), 1971, 1997