Issue
Korean Journal of Chemical Engineering,
Vol.20, No.3, 503-508, 2003
Degradation Kinetics of Recalcitrant Organic Compounds in a Decontamination Process with UV/H2O2 and UV/H2O2/TiO2 Processes
In this study, degradation aspects and kinetics of organics in a decontamination process were considered in the degradation experiments of advanced oxidation processes (AOP), i.e., UV, UV/H2O2 and UV/H2O2/TiO2 systems. In the oxalic acid degradation with different H2O2 concentrations, it was found that oxalic acid was degraded with the first order reaction and the highest degradation rate was observed at 0.1 M of hydrogen peroxide. Degradation rate of oxalic acid was much higher than that of citric acid, irrespective of degradation methods, assuming that degradation aspects are related to chemical structures. Of methods, the TiO2 mediated photocatalysis showed the highest rate constant for oxalic acid and citric acid degradation. It was clearly showed that advanced oxidation processes were effective means to degrade recalcitrant organic compounds existing in a decontamination process.
[References]
  1. Aceiuno M, Stalikas CD, Lunar L, Rubio S, Perez-Bendito D, Water Res., 36, 3582, 2002
  2. Alfano OM, Brandi RJ, Cassano AE, Chem. Eng. J., 82(1-3), 209, 2001
  3. Ayres JA, "Decontamination of Nuclear Reactors and Equipment," Ronald Press, New York, 1970
  4. Beltran FJ, Encinar JM, Gonzalez JF, Water Res., 31, 2415, 1997
  5. Beltran FJ, Gonzalez M, Gonzalez JF, Water Res., 31, 2405, 1997
  6. Beltran FJ, Rivas J, Alvarez PM, Alonso MA, Acedo B, Ind. Eng. Chem. Res., 38(11), 4189, 1999
  7. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA, Sep. Purif. Methods, 28(1), 1, 1999
  8. Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17(2), 513, 1988
  9. Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633, 2000
  10. Choi W, Kim S, Cho S, Yoo HI, Kim MH, Korean J. Chem. Eng., 18(6), 898, 2001
  11. Davis AP, Green DL, Environ. Sci. Technol., 33, 609, 1999
  12. Getoff N, Schworer F, Markovic VM, Sehested K, Nielsen SO, J. Phys. Chem., 75(6), 749, 1971
  13. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  14. Hofl C, Sigl G, Specht O, Wurdack I, Wabner D, Water Sci. Technol., 35(4), 257, 1997
  15. Ince NH, Apikyan IG, Water Res., 34(17), 4169, 2000
  16. Karpel Vel Leitner N, Dore M, J. Photochem. Photobiol. A-Chem., 99, 137, 1996
  17. Karpel Vel Leitner N, Dore M, Water Res., 31, 1383, 1997
  18. Kiwi J, Lopez A, Nantochenko V, Environ. Sci. Technol., 34, 2162, 2000
  19. Kolthoff IM, Meehan EJ, Kimura M, Talanta, 19, 1179, 1972
  20. Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K, Environ. Sci. Technol., 32, 3821, 1998
  21. Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K, Echigo S, Miner RA, Tsuno T, Matsui S, Water Res., 15, 3587, 2001
  22. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735, 1995
  23. Mazzarino I, Piccinini P, Chem. Eng. Sci., 54(15-16), 3107, 1999
  24. Ocken H, "Decontamination Handbook," EPRI Report TR-112352, EPRI, 1999
  25. Ono R, Oda T, J. Electrostat., 55, 333, 2002
  26. Park DR, Ahn BJ, Park HS, Yamashita H, Anpo M, Korean J. Chem. Eng., 18(6), 930, 2001
  27. Yang JK, Davis AP, Environ. Sci. Technol., 35, 3566, 2001
  28. Yang JK, Davis AP, Environ. Sci. Technol., 34, 3789, 2000
  29. You YS, Chung KH, Kim JH, Seo G, Korean J. Chem. Eng., 18(6), 924, 2001
  30. Wu Z, Cong Y, Zhou M, Ye Q, Tan T, Korean J. Chem. Eng., 19(5), 866, 2002
  31. Zuo Y, Deng Y, Chemosphere, 35(9), 2051, 1997