Issue
Korean Journal of Chemical Engineering,
Vol.18, No.3, 322-329, 2001
Gas Permeation Characteristics of Silica/Alumina Composite Membrane Prepared by Chemical Vapor Deposition
Amorphous silica membranes were deposited by thermal decomposition of tetraethoxysilane at 600-650 ℃ on a porous a-alumina tube with pore size of 110-180 nm or γ-alumina coated α-alumina tube with pore size of 6-8 nm. The forced cross-flow through the porous wall of the support was very effective in plugging macropores. The membranes formed on γ-alumina coated α-alumina tube showed H2 permeances much higher than the SiO2 membranes formed on the a-alumina tube. This indicated that the g-alumina film was effective in improving the H2 permeance and H2/N2 selectivity. The permeation tests with CO2, N2, CH4, C3H8 and i-C4H10 showed that a very small number of mesopores remained unplugged by the CVD. Permeation of hydrogen was explained by activated diffusion, and that of the other gases by Knudsen diffusion through the unplugged pores. Thus, the total permeance was composed of permeances due to the activated and Knudsen diffusion mechanisms. The contribution of Knudsen diffusion pores decreased to 0.02 when the γ-alumina film was modified at 650 ℃ until P(fe)=50 Pa.
[References]
  1. Aoki K, Yokoyama S, Kusakabe K, Morooka S, Korean J. Chem. Eng., 13(5), 530, 1996
  2. Asaeda M, Oki Y, Manabe T, "Preparation of Porous Silica Membranes for Separation of Inorganic Gaseous Mixtures at High Temperatures," Report on Energy Conversion and Utilization with High Efficiency. Science and Technology for Energy Conversion. Ministry of Education, Science, Sports and Culture, Japan, 253, 1993
  3. Bakker WJ, Kapteijn F, Poppe J, Moulijn JA, J. Membr. Sci., 117(1-2), 57, 1996
  4. Breck DW, "Zeolite Molecular Sieves," John Wiley, New York, 636, 1974
  5. Gavalas GR, Megiris CE, Nam SW, Chem. Eng. Sci., 44, 1829, 1989
  6. Ha HY, Nam SW, Hong SA, Lee WK, J. Membr. Sci., 85(3), 279, 1993
  7. Hwang GJ, Onuki K, Shimizu S, AIChE J., 46(1), 92, 2000
  8. Ioannides T, Gavalas GR, J. Membr. Sci., 77, 207, 1993
  9. Jiang S, Yan Y, Gavalas GR, J. Membr. Sci., 103(3), 211, 1995
  10. Jung KY, So JH, Park SB, Yang SM, Korean J. Chem. Eng., 16(2), 193, 1999
  11. Kim SJ, Gavalas GR, Ind. Eng. Chem. Res., 34(1), 168, 1995
  12. Kim SS, Choi HK, Park HC, Kim TO, Sea B, J. Korean Environ. Sci. Soc., 9, 311, 2000
  13. Kusakabe K, Sakamoto S, Saie T, Morooka S, Sep. Purif. Technol., 16, 139, 1999
  14. Delange RS, Keizer K, Burggraaf AJ, J. Membr. Sci., 104(1-2), 81, 1995
  15. Delange RS, Keizer K, Burggraaf AJ, Ind. Eng. Chem. Res., 34(11), 3838, 1995
  16. Morooka S, Yan S, Kusakabe K, Akiyama Y, J. Membr. Sci., 101(1-2), 89, 1995
  17. Nakao S, Suzuki T, Sugawara T, Tsuru T, Kimura S, Microporous Mesoporous Mater., 37, 145, 2000
  18. Noble RD, Stern SA, "Membrane Science and Technology Series 2, Membrane Separations Technology Principles and Applications," Elsevier Sci. Ltd., Netherlands, 1995
  19. Prabhu AK, Oyama ST, J. Membr. Sci., 176(2), 233, 2000
  20. Raman NK, Brinker CJ, J. Membr. Sci., 105(3), 273, 1995
  21. Sea BK, Kim SS, Kim TO, J. Korean Environ. Sci. Soc., 8, 263, 1999
  22. Shelekhin AB, Dixon AG, Ma YH, AIChE J., 41(1), 58, 1995
  23. So JH, Yoon KY, Yang SM, Park SB, Korean J. Chem. Eng., 16(2), 180, 1999
  24. Tsai CY, Tam SY, Lu YF, Brinker CJ, J. Membr. Sci., 169(2), 255, 2000
  25. Tsapatsis M, Gavalas G, J. Membr. Sci., 87(3), 281, 1994
  26. Way JD, Roberts DL, Sep. Sci. Technol., 27, 29, 1992
  27. Wu JC, Sabol H, Smith GW, Flowers DL, Liu PK, J. Membr. Sci., 96(3), 275, 1994
  28. Yoldas BE, Ceramic Bull., 54, 289, 1975