Issue
Korean Journal of Chemical Engineering,
Vol.18, No.2, 240-246, 2001
Hydrodynamic and Mass Transfer Characteristics of External-Loop Airlift Reactors without an Extension Tube above the Downcomer
The effects of the horizontal connection length (0.1≤L(c)≤0.5 m), the downcomer-to-riser cross-sectional area ratio (0.11≤A(d)/A(r)≤0.53) and the superficial gas velocity (0.02≤U(G)≤0.18 ms(-1)) on gas holdups in the riser and downcomer, the circulation liquid velocity, the mixing time, and the overall volumetric mass transfer coefficient were determined in external-loop airlift reactors without an extension tube above the downcomer [configuration (a)]. For otherwise fixed conditions, the absence of the extension tube strongly affected the hydrodynamic and mass transfer characteristics of external-loop airlift reactors. In contrast with the external-loop airlift reactor with the extension tube [configuration (b)], a large air pocket formed in the top horizontal connection and the surface aeration took place in the external-loop airlift reactor without the extension tube [configuration (a)]. As a result, the riser circulation liquid velocity in configuration (a) was slower than that in configuration (b). The riser and downcomer gas holdups, the mixing time and the overall volumetric mass transfer coefficient in configuration (a) were larger than those in configuration (b), respectively.
[References]
  1. Akita K, Nakanishi O, Tsuchiya K, Chem. Eng. Sci., 49(15), 2521, 1994
  2. Bello RA, Robinson CW, Moo-Young M, Can. J. Chem. Eng., 62, 573, 1984
  3. Bello RA, Robinson CW, Moo-Young M, Biotechnol. Bioeng., 27, 369, 1985
  4. Bello RA, Robinson CW, Moo-Young M, Chem. Eng. Sci., 40, 53, 1985
  5. Bentifraouine C, Xuereb C, Riba JP, J. Chem. Technol. Biotechnol., 69(3), 345, 1997
  6. Bentifraouine C, Xuereb C, Riba JP, Chem. Eng. J., 66, 91, 1997
  7. Benyahia F, Jones L, Petit S, Plantaz D, Chem. Eng. Technol., 19(5), 425, 1996
  8. Chisti MY, Moo-Young M, Chem. Eng. Commun., 60, 195, 1987
  9. Chisti MY, Moo-Young M, Biotechnol. Bioeng., 31, 487, 1988
  10. Choi KH, Korean J. Chem. Eng., 16(4), 441, 1999
  11. Choi KH, Lee WK, J. Chem. Technol. Biotechnol., 56, 51, 1993
  12. Choi KH, Chisti Y, Mooyoung M, J. Chem. Technol. Biotechnol., 62(4), 327, 1995
  13. Choi KH, Chisti MY, Moo-Young M, Chem. Eng. Commun., 138, 171, 1995
  14. Choi KH, Korean J. Chem. Eng., 13(4), 379, 1996
  15. Choi KH, Chem. Eng. Commun., 160, 103, 1997
  16. Choi KH, Han BH, Lee WK, HWAHAK KONGHAK, 28(2), 220, 1990
  17. Gavrilescu M, Tudose RZ, Chem. Eng. J., 66, 97, 1997
  18. Kemblowski Z, Przywarski J, Diab A, Chem. Eng. Sci., 48, 4023, 1993
  19. McMamamey WJ, Wase DAJ, Raymahasay S, Thaynithy K, J. Chem. Technol. Biotechnol., 34B, 151, 1984
  20. Mercer DG, Biotechnol. Bioeng., 23, 2421, 1981
  21. Merchuk JC, Siegel H, J. Chem. Technol. Biotechnol., 41, 105, 1988
  22. Merchuk JC, Stein Y, AIChE J., 27, 377, 1981
  23. Merchuk JC, Chem. Eng. Sci., 41, 11, 1986
  24. Park CJ, Korean J. Chem. Eng., 16(5), 694, 1999
  25. Petrovic DLJ, Posarac D, Dudukovic A, Chem. Eng. Commun., 133, 1, 1995
  26. Popovic M, Robinson CW, Biotechnol. Bioeng., 32, 301, 1988
  27. Popovic M, Robinson CW, Chem. Eng. Sci., 42, 2811, 1987
  28. Rand MC, Greenberg AE, Taras MJ, "Standard Methods for the Examination of Water and Wastewater," 14th Ed., American Public Health Association, Washington, 87, 1975
  29. Siegel MH, Merchuk JC, Schugerl K, AIChE J., 32, 1585, 1986
  30. Snape JB, Zahradnik J, Fialova M, Thomas NH, Chem. Eng. Sci., 50(20), 3175, 1995