Issue
Korean Journal of Chemical Engineering,
Vol.18, No.1, 46-53, 2001
Microstructural Lattice Simulation and Transient Rheological Behavior of a Flow-aligning Liquid Crystalline Polymer under Low Shear Rates
A microstructural lattice simulation for textured liquid crystalline polymer is carried out to predict rheological behavior, especially the stress evolution after shear inception. It is based on a combination of two main concepts: (i) the director in each cell of a supramolecular lattice has an orientation described by the minimization of total energy of director map, and (ii) the torque balance of each director under shear flow and anisotropic relaxational shear moduli depends on the averaged orientation of the director map. By considering the interaction between the nearest-neighbor directors, the spatial orientational correlation is introduced and the spatial heterogeneity, i.e., a polydomain texture, is generated simultaneously. For the start-up shear flow, the overshoot and the steady value of shear stress increase and the former shifts toward a shorter time as the applied shear rate increases. Also, the calculated stress evolution is compared with the experimental result of a thermotropic liquid crystalline poly(ester-imide).
[References]
  1. Alderman NJ, Mackley MR, Faraday Disc. Chem. Soc., 79, 149, 1985
  2. Asada T, Muramastsu H, Watanabe R, Onogi S, Macromolecules, 13, 867, 1980
  3. Assender HE, Windle AH, Macromolecules, 27(12), 3439, 1994
  4. Baek SG, Magda JJ, Larson RG, Hudson SD, J. Rheol., 38(5), 1473, 1994
  5. Bedford SE, Nicholson TM, Windle AH, Liq. Cryst., 10, 63, 1991
  6. Bird RB, Armstrong RC, Hassager O, "Dynamics of Polymeric Liquids. Volume 1 Fluid Mechanics," 2nd Ed., John Weily & Sons, New York, 1987
  7. Chandrasekhar S, "Liquid Crystals," 2nd Ed., Cambridge University Press, Cambridge, 1992
  8. Chang S, Han CD, Macromolecules, 30(6), 1656, 1997
  9. Chow AW, Fuller GG, Macromolecules, 18, 786, 1985
  10. Cocchini F, Nobile MR, Acierno D, J. Rheol., 36, 1307, 1992
  11. Ding J, Yang Y, Rheol. Acta, 33(5), 405, 1994
  12. Doi M, J. Polym. Sci. Polym. Symp., 73, 93, 1985
  13. Doi M, J. Polym. Sci. B: Polym. Phys., 19, 229, 1981
  14. Donald AM, Windle AH, "Liquid Crystalline Polymer," Cambridge University Press, Cambridge, 1992
  15. Done D, Baird DG, Polym. Eng. Sci., 30, 989, 1990
  16. Driscoll P, Hayase S, Masuda T, Polym. Eng. Sci., 34(6), 519, 1994
  17. De Gennes PG, Prost J, "The Physics of Liquid Crystals," 2nd Ed., Clarendon Press, Oxford, 1992
  18. Gervat L, Mackley MR, Nicholson TM, Windle AH, Phil. Trans. Roy. Soc. Lond., A350, 1, 1995
  19. Gleeson JT, Larson RG, Mead DW, Kiss G, Cladis PE, Liq. Cryst., 11, 341, 1992
  20. Guskey SM, Winter HH, J. Rheol., 35, 1191, 1991
  21. Han CD, Chang S, J. Rheol., 38(2), 241, 1994
  22. Han WH, Rey AD, J. Rheol., 39(2), 301, 1995
  23. Hanna S, Windle AH, Polymer, 29, 207, 1988
  24. Hongladarom K, Burghardt WR, Macromolecules, 27(2), 483, 1994
  25. Kamath VM, Mackley MR, J. Non-Newton. Fluid Mech., 32, 119, 1989
  26. Kim KM, Kim TK, Kim S, Chung IJ, Korean J. Chem. Eng., 14(1), 8, 1997
  27. Kim KM, Cho H, Chung IJ, J. Rheol., 38(5), 1271, 1994
  28. Kim SO, Kim TK, Chung IJ, Polymer, 41(12), 4709, 2000
  29. Kim SS, Han CD, J. Polym. Sci. B: Polym. Phys., 32(2), 371, 1994
  30. Kim SS, Han CD, Macromolecules, 26, 3176, 1993
  31. Kim SS, Han CD, J. Rheol., 37, 847, 1993
  32. Kim TK, Kim KM, Chung IJ, Polym. J., 29, 85, 1997
  33. Kimura T, Gray DG, Macromolecules, 26, 3455, 1993
  34. Kiss G, Porter RS, J. Polym. Sci. Polym. Symp., 65, 193, 1978
  35. Kleman M, Liebert L, Strezelecki L, Polymer, 24, 295, 1983
  36. Langelaan HC, Gotsis AD, J. Rheol., 40(1), 107, 1996
  37. Larson RG, Macromolecules, 23, 3983, 1990
  38. Larson RG, Doi M, J. Rheol., 35, 539, 1991
  39. Larson RG, Mead DW, J. Rheol., 33, 185, 1989
  40. Larson RG, Mead DW, J. Polym. Sci. B: Polym. Phys., 29, 1271, 1991
  41. Lee SD, Meyer RB, Phys. Rev. Lett., 61, 2217, 1988
  42. Lin YG, Winter HH, Macromolecules, 21, 2439, 1989
  43. Marrucci G, Grizzuti N, J. Polym. Sci. Polym. Lett. Ed., 21, 83, 1983
  44. Nakai A, Wang W, Hashimoto T, Blumstein A, Maeda Y, Macromolecules, 27(23), 6963, 1994
  45. Picken SJ, Moldenaers P, Berghmans S, Mewis J, Macromolecules, 25, 4759, 1992
  46. Semenov AN, J. Rheol., 37, 911, 1993
  47. Viola GG, Baird DG, J. Rheol., 30, 601, 1986
  48. Winter HH, Wedler W, J. Rheol., 37, 409, 1993
  49. Wissbrun KF, Brit. Polym. J., 12, 163, 1980