Issue
Korean Journal of Chemical Engineering,
Vol.38, No.12, 2423-2435, 2021
Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell
Nowadays SOFCs have received great attention due to its advantages such as; high efficiency, low emission and fuel flexibility. But its high operating temperature entails thermal stresses and gas sealing problems which intrigues researchers to reduce the working temperature via thermal management, improved fluid flow, and proper interconnect and channel design. In this study, a three-dimensional model of a co - flow internal reforming planar anode - supported solid oxide fuel cell has been developed. The simulation results are discussed to investigate the performance of different kinds of SOFC flow passages with rectangular, trapezoidal and triangular channels. Also in this study, the effect of inlet fuel and air velocity on the cell performance of the different interconnect ducts is investigated. The results showed that the effect of channel geometry at high voltages is small while, at low voltages channel geometry has an important effect on cell performance. By increasing inlet fuel velocity and decreasing inlet air velocity for all channel geometries, the current and power density and temperature difference increase. Also it was found that, the cells with rectangular channels have better performance than the cells with trapezoidal and triangular channels.
[References]
  1. Park JM, Kim DY, Beak JD, Yoon YJ, Su PC, Lee SH, Energies, 11, 473, 2018
  2. Kong W, Han Z, Lu SY, Gao X, Wang XR, Int. J. Hydrog. Energy, 45(39), 20329, 2020
  3. Manglik RM, Magar YN, J. Thermal Sci. Eng. Appl., 7, 041003, 2015
  4. Haynes C, Wepfer WJ, Int. J. Hydrog. Energy, 26(4), 369, 2001
  5. Borji M, Atashkari K, Nariman-zadeh N, Masoumpour M, Proc. Inst. Mech. Eng., Part C, 229, 3125, 2015
  6. Borji M, Atashkari K, Ghorbani S, Nariman-zadeh N, Proc. Inst. Mech. Eng., Part C, 231, 672, 2017
  7. Borji M, Atashkari K, Ghorbani S, Nariman-Zadeh N, Int. J. Hydrog. Energy, 40(41), 14202, 2015
  8. Petersen TF, Houbak N, Elmegaard B, Int. J. Thermodyn., 9, 147, 2006
  9. Aguiar P, Adjiman CS, Brandon NP, J. Power Sources, 138(1-2), 120, 2004
  10. Aguiar P, Adjiman CS, Brandon NP, J. Power Sources, 147(1-2), 136, 2005
  11. Li XG, Sabir M, Int. J. Hydrog. Energy, 30(4), 359, 2005
  12. Heidary H, Kermani MJ, Int. Commun. Heat Mass Transf., 39, 112, 2012
  13. Heidary H, Abbassi A, Kermani MJ, Energy Conv. Manag., 75, 748, 2013
  14. Heidary H, Kermani MJ, Int. J. Hydrog. Energy, 38(13), 5485, 2013
  15. Liu H, Li PW, Wang K, Int. J. Hydrog. Energy, 38(23), 9835, 2013
  16. Dehsara M, Kermani M, J. Mech. Sci. Technol., 28, 365, 2014
  17. Lin ZJ, Stevenson JW, Khaleel MA, J. Power Sources, 117(1-2), 92, 2003
  18. Magar YN, Manglik RM, J. Fuel Cell Sci. Technol., 4, 185, 2007
  19. Andersson M, Yuan J, Sunden B, Fuel Cells, 14, 177, 2014
  20. Bhattacharya D, Mukhopadhyay J, Biswas N, Basu RN, Das PK, Int. J. Heat Mass Transfer, 123, 382, 2018
  21. Khazaee I, Rava A, Energy, 119, 235, 2017
  22. Zeng SM, Zhang XQ, Chen JS, Li TS, Andersson M, Int. J. Heat Mass Transf., 125, 506, 2018
  23. Andersson M, Yuan JL, Sunden B, Int. J. Heat Mass Transf., 55(4), 773, 2012
  24. Takino K, Tachikawa Y, Mori K, Lyth SM, Shiratori Y, Taniguchi S, Sasaki K, Int. J. Hydrog. Energy, 45(11), 6912, 2020
  25. Shi JX, Xue XJ, Chem. Eng. J., 163(1-2), 119, 2010
  26. Hussain MM, Li X, Dincer I, J. Power Sources, 161(2), 1012, 2006
  27. Andersson M, Paradis H, Yuan JL, Sunden B, Electrochim. Acta, 109, 881, 2013
  28. Wang Y, Zhan RB, Qin YZ, Zhang GB, Du Q, Jiao K, Int. J. Hydrog. Energy, 43(43), 20059, 2018
  29. Celik AN, Int. J. Hydrog. Energy, 43(42), 19730, 2018
  30. Choudhary T, Sanjay, Int. J. Hydrog. Energy, 41(24), 10212, 2016
  31. Poling BE, Prausnitz JM, O’Connell JP, The properties of gases and liquid, McGraw-Hill companies Inc, New York (2001).
  32. Dutta A, Multicomponent gas diffusion and adsorption in coals for enhanced methane recovery, Standford University (2009).
  33. Ni M, Energy Conv. Manag., 70, 116, 2013
  34. Kakac S, Pramuanjaroenkij A, Zhou XY, Int. J. Hydrog. Energy, 32(7), 761, 2007
  35. Chelmehsara ME, Mahmoudimehr J, Int. J. Hydrog. Energy, 43(32), 15521, 2018
  36. Todd B, Young JB, J. Power Sources, 110(1), 186, 2002
  37. Lee S, Kim H, Yoon KJ, Son JW, Lee JH, Kim BK, Choi W, Hong J, Int. J. Heat Mass Transf., 97, 77, 2016
  38. Pramuanjaroenkij A, Kakac S, Zhou XY, Int. J. Hydrog. Energy, 33(10), 2547, 2008
  39. Haberman BA, Young JB, Int. J. Heat Mass Transf., 47(17-18), 3617, 2004
  40. Lin B, Shi YX, Ni M, Cai NS, Int. J. Hydrog. Energy, 40(7), 3035, 2015
  41. Andersson M, et al., Engineering and Technology Conference Fuel Cell, Washington, DC, USA (2011).