Issue
Korean Journal of Chemical Engineering,
Vol.38, No.12, 2406-2422, 2021
Data-driven fault detection for chemical processes using autoencoder with data augmentation
Process monitoring plays an essential role in safe and profitable operations. Various data-driven fault detection models have been suggested, but they cannot perform properly when the training data are insufficient or the information to construct the manifold is confined to a specific region. In this study, a process monitoring framework integrated with data augmentation is proposed to supplement rare but informative samples for the boundary regions of the normal state. To generate data for augmentation, a variational autoencoder was employed to exploit its advantage of stable convergence. For the construction of the process monitoring system, an autoencoder that can extract useful features in an unsupervised manner was used. To illustrate the efficacy of the proposed method, a case study for the Tennessee Eastman process was applied. The results show that the proposed method can improve the monitoring performance compared to the autoencoder without data augmentation in terms of fault detection accuracy and delay, particularly within the feature space.
[References]
  1. Venkatsubramanian V, Rengaswamy R, Yin K, Kavuri SN, Comput. Chem. Eng., 27(3), 293, 2003
  2. Lee J, Yoo C, Wook S, Vanrolleghem PA, Lee I, 59, 223 (2004).
  3. Yan W, Guo P, Li Z, Chemom. Intell. Lab. Syst., 15, 31, 2016
  4. Holden AJ, Science, 313, 504, 2006
  5. Lv F, Wen C, Bao Z, Liu M, 2016 Am. Control Conf., 2, 6851 (2016).
  6. Fan J, Wang W, IEEE, 1001 (2017).
  7. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA, J. Mach. Learn. Res., 11, 3371, 2010
  8. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y, Proc. 28th Int. Conf. Mach. Learn. ICML 2011, 1, 833 (2011).
  9. Jiang L, Song Z, Ge Z, Chen J, Ind. Eng. Chem. Res., 56, 26, 2017
  10. Heo S, Lee JH, Processes, 7, 7, 2019
  11. Zhang ZH, Jiang T, Li SH, Yang YP, J. Process Control, 64, 49, 2018
  12. Yu W, Zhao C, IEEE Trans. Control Syst. Technol., 1 (2019).
  13. Zhao H, Chemom. Intell. Lab. Syst., 176, 11, 2018
  14. Simard PY, Steinkraus D, Platt JC, Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, 958 (2003).
  15. Han H, Wang WY, Mao BH, in Lecture Notes in Computer Science, 3644, 878 (2005).
  16. Wong SC, Mcdonnell MD, 2016 Int. Conf. Digit. Image Comput. Tech. Appl., 1 (2016).
  17. Devries T, Taylor GW, arXiv Prepr. arXiv1702.05538, 1 (2017).
  18. Wan Z, Zhang Y, He H, IEEE, 1 (2017).
  19. Etworks N, Storkey A, Edwards H, arXiv preprint arXiv:1711.04340, 1 (2017).
  20. Jorge J, Paredes R, Sanchez JA, Bened M, VISIGRAPP (5:VISAPP), 96 (2018).
  21. Hsu WN, Zhang Y, Glass J, IEEE Autom. Speech Recognit. Underst. Work., 1, 16 (2017).
  22. Gao X, Deng F, Yue X, Neurocomputing, 396, 487, 2019
  23. Lim SK, Loo Y, Tran N, Cheung N, Roig G, Elovici Y, 2018 IEEE Int. Conf. Data Min., 1122 (2018).
  24. Mellon C, Berkeley UC, arXiv preprint arXiv:1606.05908, 1 (2016).
  25. Krogh A, Hertz JA, Adv. Neural Inf. Process. Syst. (1992).
  26. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R, J. Mach. Learn. Res., 15(1), 1929, 2014
  27. Ioffe S, Szegedy C, Int. Conf. Mach. Learn. (2015).
  28. Han S, Pool J, Tran J, Dally WJ, arXiv preprint arXiv:1506.02626 (2015).
  29. Heo S, Lee JH, Comput. Chem. Eng., 127, 1, 2019
  30. Baldi P, Hornik K, Neural Networks, 2(1), 53, 1989
  31. Zhao S, Song J, Ermon S, Proc. AAAI Conf. Artif. Intell., 33(1), 5885, 2019
  32. Downs JJ, Company EC, Comput. Chem. Eng., 17, 3, 1993
  33. Bathelt A, Ricker NL, Jelali M, IFAC-PapersOnLine, 48(8), 309 (2014).
  34. Ricker NL, J. Process Control, 6(4), 205, 1996
  35. Lee H, Kim C, Lim S, Min J, Comput. Chem. Eng., 142, 107064, 2020
  36. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K, Comput. Chem. Eng., 27(3), 327, 2003
  37. Samuel RT, Cao Y, Syst. Sci. Control Eng., 4(1), 165, 2016
  38. Olson DL, Delen D, Advanced data mining techniques, Springer, December (2013).
  39. Kim C, Lee H, Kim K, Lee Y, Lee WB, Ind. Eng. Chem. Res., 57(39), 13144, 2018
  40. Makhzani A, Frey B, Goodfellow I, arXiv Prepr. arXiv1511.05644 (2014).