Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2304-2312, 2021
Solubility measurement and preparation of nanoparticles of ampicillin using subcritical water precipitation method
To improve the bioavailability of ampicillin trihydrate (AMP) as a poorly water-soluble drug, the nanonization of AMP particles was carried out by solvent anti-solvent precipitation for the first time. In this method the subcritical water (SW) and cold water at ambient conditions were utilized as the solvent and anti-solvent, respectively. At first, the solubility of AMP in SW was measured. The solubility of AMP in SW at a constant pressure of 5MPa and the temperature range from 303.15 to 403.15 K was found to range from 0.380 x10-3 to 17.689 x 10 -3 mole fractions. The effects of three independent variables, including SW temperature, polyethylene glycol concentration, and anti-solvent temperature, on the particle size and morphology of the precipitated nanoparticles were studied. The obtained results of analyses confirmed that the AMP particles were nanosized to the smallest mean size of 66.5 nm using an environmentally friendly method without the requirement of organic solvents and related post-processing purification stages.
[References]
  1. Absalan G, Abbaspour A, Jafari M, Nekoeinia M, Ershadifar H, J. Iran. Chem. Soc., 12, 879, 2015
  2. Tenorio A, Gordillo MD, Pereyra C, de la Ossa EJM, J. Supercrit. Fluids, 40(2), 308, 2007
  3. Reverchon E, Porta GD, Spada A, J. Pharm. Pharmacol., 55, 1465, 2003
  4. Sharma SK, Singh L, Singh S, Sch. J. Appl. Med. Sci., 1, 291, 2013
  5. Fan Y, Pauer AC, Gonzales AA, Fenniri H, nt. J. Nanomedicine, 14, 7281, 2019
  6. Poole JW, Bahal CK, J. Pharm. Sci., 57, 1945, 1968
  7. Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, Chen C, Thompson K, Higgins R, Batra U, Int. J. Pharm., 285, 135, 2004
  8. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J, Asian J. Pharm. Sci., 9, 304, 2014
  9. Pu Y, Wang JX, Wang D, Foster NR, Chen JF, Chem. Eng. Process., 140, 36, 2019
  10. Sodeifian G, Razmimanesh F, Sajadian SA, J. Mol. Liq., 297, 11740, 2020
  11. Sodeifian G, Sajadian SA, Ardestani NS, Razmimanesh F, J. Supercrit. Fluids, 147, 241, 2019
  12. Sayyar Z, Jafarizadeh-Malmiri H, Chem. Eng. Process, 153, 107938, 2020
  13. Quan C, Carlfors J, Turner C, Chin. J. Chem. Eng., 17(2), 344, 2009
  14. Kayser O, Lemke A, Hernandez-Trejo N, Curr. Pharm. Biotechnol., 6, 3, 2005
  15. Leuner C, Dressman J, Eur. J. Pharm. Biopharm., 50, 47, 2000
  16. Stolnik S, Illum L, Davis S, Adv. Drug Deliv. Rev., 16, 195, 1995
  17. Keck CK, Muller RH, Eur. J. Pharm. Biopharm., 62, 3, 2006
  18. Louey MD, Oort MV, Hickey AJ, Pharm. Res., 21, 1200, 2004
  19. Rasenack N, Steckel H, Muller BW, J. Pharm. Sci., 92, 35, 2003
  20. Song KH, Lee CH, Lim JS, Lee YW, Korean J. Chem. Eng., 19(1), 139, 2002
  21. Chinnarasu C, Montes A, Pereyra C, Casas L, Fernandez-Ponce MT, Mantell C, Pattabhi S, de la Ossa EM, Korean J. Chem. Eng., 33(2), 594, 2016
  22. Park SJ, Yeo SD, Korean J. Chem. Eng., 25(3), 575, 2008
  23. Kim CK, Lee BC, Lee YW, Kim HS, Korean J. Chem. Eng., 26(4), 1125, 2009
  24. Dalvi SV, Mukhopadhyay M, Powder Technol., 195(3), 190, 2009
  25. Masoodiyeh F, Karimi-Sabet J, Khanchi AR, Mozdianfard MR, Powder Technol., 269, 461, 2015
  26. Montes A, Tenorio A, Gordillo MD, Pereyra CM, de la Ossa EJM, Ind. Eng. Chem. Res., 50(4), 2343, 2011
  27. Esfandiari N, Ghoreishi SM, AAPS Pharm. Sci. Tech., 6, 1263, 2015
  28. Khajenoori M, Asl AH, Hormozi F, Chin. J. Chem. Eng., 17(3), 359, 2009
  29. Ahmadi O, Jafarizadeh-Malmiri H, Food Sci. Biotechnol., 29, 783, 2020
  30. Alenezi R, Leeke GA, Santos RCD, Khan AR, Chem. Eng. Res. Des., 87(6A), 867, 2009
  31. Fernandez-Prini RJ, et al., High-temperature aqueous solutions: Thermodynamic properties, CRC Press, Boca Raton (1992).
  32. Park JN, Ali-Nehari A, Woo HC, Chun BS, Korean J. Chem. Eng., 29(11), 1604, 2012
  33. Carr AG, Mammucari R, Foster NR, Ind. Eng. Chem. Res., 49(7), 3403, 2010
  34. Mohammadi HS, Asl AH, Khajenoori M, Chin. J. Chem. Eng., 8, 2620, 2020
  35. Chen XY, Shang YL, Li YH, Wang JX, Maimouna AG, Li YX, Zou D, Foster NR, Yun J, Pu Y, Chem. Eng. J., 263, 20, 2015
  36. Hugger ED, Novak L, Burton PS, Audus KL, Borchardt RT, J. Pharm. Sci., 91, 1991, 2002
  37. Rahimi M, Valeh-e-Sheyda P, Rashidi H, Korean J. Chem. Eng., 34(11), 3017, 2017
  38. Carr AG, Mammucari R, Foster NR, Ind. Eng. Chem. Res., 49(19), 9385, 2010
  39. Pu Y, Lu JD, Wang D, Cai FH, Wang JX, Foster NR, Chen JF, Powder Technol., 321, 197, 2017
  40. Carr AG, Mammucari R, Foster NR, Chem. Eng. J., 172(1), 1, 2011
  41. Kayan B, Yang Y, Lindquist EJ, Gizir AM, J. Chem. Eng. Data, 55(6), 2229, 2010
  42. Kapalavavi B, Ankney J, Baucom M, Yang Y, J. Chem. Eng. Data, 59(3), 912, 2014
  43. Uematsu M, Frank EU, J. Phys. Chem. Ref. Data, 9, 1291, 1980
  44. Caffarena ER, Grigera JR, Physica A, 342, 34, 2004
  45. Takebayashi Y, Sue K, Yoda S, Hakuta Y, Furuya T, J. Chem. Eng. Data, 57(6), 1810, 2012
  46. Shinoda K, J. Phys. Chem. A, 81, 1300, 1977
  47. Miller DJ, Hawthorne SB, Anal. Chem., 70, 1618, 1998
  48. Akay S, Kayan B, Cunbin D, Wang J, Yang Y, J. Mol. Liq., 253, 270, 2018
  49. Karthika S, Radhakrishnan T, Kalaichelvi P, Cryst. Growth Des., 16, 6663, 2016
  50. Turk M, J. Supercrit. Fluids, 18(3), 169, 2000
  51. Sodeifian G, Sajadian SA, Daneshyan S, J. Supercrit. Fluids, 140, 72, 2018
  52. Pu Y, Li YH, Wang D, Foster NR, Wang JX, Chen JF, Powder Technol., 308, 200, 2017
  53. Pu Y, Wen XF, Li YH, Wang D, Foster NR, Chen JF, Powder Technol., 305, 125, 2017
  54. Carr AG, Mammucari R, Foster NR, Int. J. Pharm., 405, 169, 2011