Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2294-2303, 2021
Facile synthesis of zero valent sulfur nanoparticles for catalytic detoxification of hexavalent chromium, cytotoxicity against microalgae and ultraviolet protection properties
Industrial effluents that contain various toxic substances have polluted our water and soil and posed major health issues. Thus, their removal or conversion to non-toxic products is highly crucial and desirable. This work emphasizes the synthesis of sulfur nanoparticles through precipitation method using anionic and cationic surfactants for exploring its catalytic efficiency in the photocatalytic reduction of hexavalent chromium Cr (VI). As-synthesized sulfur nanoparticles (SNPs) were physically characterized by UV-Vis absorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and dynamic light scattering (DLS) measurements. The SNPs prepared using both surfactants have narrow size distribution with great homogeneity (50-80 nm). Moreover, excellent efficiency for Cr (VI) to Cr (III) reduction was recorded for SNPs. Besides, cytotoxicity analysis against microalgae Picochlorum sp. was analyzed and the SNPs showed no negative effect on algal growth and chlorophyll a concentration. Finally, the SNPs were found to provide excellent sunlight protection. Our results highlight that SNPs have great potential for the treatment of industrial wastewater with greater reproducibility. Moreover, they are equally effective against harmful sun rays and are suitable in different skin care products.
[References]
  1. Daniel MC, Astruc D, Chem. Rev., 104(1), 293, 2004
  2. Younis A, Chu DW, Li CM, Das T, Sehar S, Manefield M, Li S, Langmuir, 30(4), 1183, 2014
  3. Younis A, Chu D, Kaneti YV, Li S, Nanoscale, 8, 378, 2016
  4. Sehar S, Naz I, Rehman A, Sun W, Alhewairini S, Zahid MN, Younis A, Appl. Organomet. Chem., 35, e6069, 2021
  5. Younis A, Physica E, 126, 114475, 2021
  6. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N, Mater. Lett., 61, 3984, 2007
  7. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB, Pharm. Res., 24, 1415, 2007
  8. Younis A, Chu D, Li S, J. Mater. Chem. C, 2, 10291, 2014
  9. Younis A, Zhang L, Chu D, Li S, Appl. Phys. Lett., 108, 033506, 2016
  10. Thema FT, Manikandan E, Gurib-Fakim A, Maaza M, J. Alloy. Compd., 657, 655, 2016
  11. Li DN, Shao FQ, Feng JJ, Wei J, Zhang QL, Wang AJ, Mater. Chem. Phys., 205, 64, 2018
  12. Hu LY, Chen LX, Liu MT, Wang AJ, Wu LJ, Feng JJ, J. Colloid Interface Sci., 493, 94, 2017
  13. Younis A, Chu A, Shah AH, Du H, Li S, ACS Appl. Mater. Interfaces, 9, 1585, 2017
  14. Sehar S, Naz I, Perveen I, Ahmed S, Korean J. Chem. Eng., 36(1), 56, 2019
  15. Guo X, Gei GT, Su H, De Zhang L, J. Phys. Chem. C, 115, 1608, 2011
  16. Avudainayagam S, et al., Chemistry of chromium in soils with emphasis on tannery waste sites, NY (2003).
  17. Desai C, Jain K, Madamwar D, Bioresour. Technol., 99(14), 6059, 2008
  18. Lu Z, Ouyang X, Zhang W, Lu F, Appl. Mech. Mater., 295, 74, 2013
  19. Jain K, et al., Bacterial interaction with chromium and strategies for remediation of hexavalent chromium pollution, Boca Raton (2017).
  20. Ahmed MA, Elsir AT, Mohammed F, Elbushra HA, Tawer S, Eassa N, MRS Adv., 3, 42, 2018
  21. Duresa LW, Kuo DH, Ahmed KE, Zeleke MA, Abdullah H, New J. Chem., 43, 8746, 2019
  22. Ellis AS, Johnson TM, Bullen TD, Science, 295, 2060, 2002
  23. Chiu A, et al., J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 28, 188 (2010).
  24. Khan MS, et al., Chromium-plant-growthpromoting rhizobacteria interactions: Toxicity and management, Vienna (2012).
  25. Abdullah H, Kuo DH, ACS Appl. Mater. Interfaces, 7, 26941, 2015
  26. Zhao H, Zhang G, Chong S, Zhang N, Liu Y, Ultrason. Sonochem., 27, 474, 2015
  27. Adam C, Wohlfarth J, Haußmann M, Sennefelder H, Rodin A, Maler M, Martin SF, Goebeler M, Schmidt M, J. Invest. Dermatol., 137, 367, 2017
  28. Nezar S, Cherifi Y, Barras A, Addad A, Dogheche E, Saoula N, Laoufi NA, Roussel P, Szunerits S, Boukherroub R, Arab. J. Chem., 12, 215, 2019
  29. Choudhury SR, Roy S, Goswami A, Basu S, J. Antimicrob. Chemoter., 67, 1134, 2012
  30. Faten Z, Mustafa H, Muayad ALD, J. Microb. Biochem. Technol., 10, 59, 2018
  31. Valizadeh S, Rasoulifard MH, Dorraji MSS, Korean J. Chem. Eng., 33(2), 481, 2016
  32. Organization for Economic Cooperation and Development. Paris, France (1984).
  33. Vohra FC, Determination of photosynthetic pigment in seawater. Monographs on oceanographic methodology, UNESCO, France (1966).
  34. Donglikar MM, Deore SL, Pharmacogn. J., 8, 171, 2016
  35. Sayre RM, Black HS, J. Photochem. Photobiol. B-Biol., 12, 83, 1992
  36. Ramimoghadam D, Bin Hussein MZ, Taufiq-Yap YH, Int. J. Mol. Sci., 13(10), 13275, 2012
  37. El-Nagar GA, Sarhan RM, Abouserie A, Maticiuc N, Bargheer M, Lauermann I, Roth C, Sci. Rep., 7, 12181, 2017
  38. Strauss HL, Greenhouse JA, Elemental sulfur chemistry and physics, Interscience Publishers, New York (1965).
  39. Shankar S, Rhim JW, Food Hydrocolloids, 82, 116, 2018
  40. Khairan K, Zahraturriaz, Jalil Z, Rasayan J. Chem., 12, 50, 2019
  41. Shin HJ, Jeon SS, Im SS, Synth. Met., 161, 1284, 2011
  42. Holzwarth U, Gibson N, Nat. Nanotechnol., 6(9), 534, 2011
  43. Tripathi RM, Rao RP, Tsuzuki T, RSC Adv., 8, 36345, 2018
  44. Chaudhuri RG, Paria S, J. Colloid Interface Sci., 354(2), 563, 2011
  45. Suryavanshi P, Pandit R, Gade A, Derita M, Zachino S, Rai M, Lwt-Food Sci. Technol., 81, 188, 2017
  46. Richardson NV, Weinberger P, J. Electron. Spectros. Relat. Phenomena, 6, 109, 1975
  47. Farooqi Z, Akram MW, Begum R, Wu W, Irfan A, J. Hazard. Mater., 402, 123535, 2021
  48. Tripathi RM, Chung SJ, Sci. Rep., 10, 640, 2020
  49. Wu J, Liu BB, Ren ZX, Ni MY, Li C, Gong YY, Qin W, Huang YL, Sun CQ, Liu XJ, J. Colloid Interface Sci., 517, 80, 2018
  50. Islam JB, Furukawa M, Tateishi I, Katsumata H, Kaneco S, Chem. Eng., 3, 33, 2019
  51. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L, Ecotoxicology, 17, 372, 2008
  52. Wang F, Guan W, Xu L, Ding Z, Ma H, Ma A, Terry N, Appl. Sci., 9, 1534, 2019
  53. Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R, Chemosphere, 87, 1388, 2012
  54. Chen X, Zhang C, Tan L, Wang J, Environ. Pollut., 236, 454, 2018
  55. Salem N, Albanna L, Awwad A, Ibrahim Q, Abdeen A, J. Agric. Sci., 8, 188, 2016
  56. Iswarya V, Bhuvaneshwari M, Alex SA, et al., Aquat. Toxicol., 161, 154, 2015
  57. Wei C, Zhang Y, Jing G, Bing H, Xu Y, Yuan J, J. Environ. Sci., 22, 155, 2010
  58. Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A, J. Nanoparticle Res., 13, 3287, 2011
  59. Zheng S, Zhou Q, Chen C, Yang F, Cai Z, Li D, Geng Q, Feng Y, Wang HQ, Sci. Total Environ., 660, 1182, 2019
  60. Barreto DM, Lombardi AT, Water Air Soil Pollut., 227, 450, 2016
  61. Miri A, Darroudi M, Sarani M, Appl. Organomet. Chem., 34, e5308, 2020
  62. Srikant V, Clarke DR, J. Appl. Phys., 83, 5447, 1998
  63. Valencia S, Marin JM, Restrepo G, Open Mater. Sci. J., 4, 9, 2009
  64. Younis A, Loucif A, Ceram. Int., 47, 15500, 2021