Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2286-2293, 2021
Ultrasonic cavitation bubble- and gas bubble-assisted adsorptionof paclitaxel from Taxus chinensis onto Sylopute
This study presents a technique for adsorption of paclitaxel on Sylopute using ultrasonic cavitation bubbles and gas bubbles. Compared with the conventional adsorption (control), the adsorbed amount and adsorption rate constant increased, respectively, by 1.27-1.44 times and 7.44-9.71 times in ultrasonic adsorption (with mixing at 80-250W), 1.14-1.27 times and 4.63-9.31 times in ultrasonic adsorption (without mixing at 80-250 W), and 1.06-1.19 times and 1.18-1.34 times in gas bubble-adsorption (without mixing at 1.15-9.41 L/min). As a result of investigating the adsorption mechanism in which cavitation bubbles were introduced, it was shown that microjets and shock waves produced by bubble collapse, rather than the bubble itself, drastically improve mass transport in the pores of the adsorbent, thereby completely eliminating intraparticle diffusion resistance. In the case of gas bubbles, although the intraparticle diffusion coefficient increased by 1.34-1.75 times compared with the control, there was a limitation in promoting intraparticle diffusion.
[References]
  1. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 25, 86, 2020
  2. Seca AML, Pinto DCGA, Int. J. Mol. Sci., 19, 263, 2018
  3. Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965, 2019
  4. Pyo SH, Choi HJ, Han BH, J. Chromatogr. A, 1123, 15, 2006
  5. Seo HW, Kim JH, Process Biochem., 87, 238, 2019
  6. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985, 2004
  7. Yoo KW, Kim JH, Biotechnol. Bioprocess Eng., 23, 532, 2018
  8. Lee CG, Kim JH, Korean Chem. Eng. Res., 54(1), 89, 2016
  9. Lim YS, Kim JH, J. Chem. Thermodyn., 115, 261, 2017
  10. Hamdaoui O, Naffrechoux E, Tifouti L, Petrier C, Ultrason. Sonochem., 10, 109, 2003
  11. Hamdaoui O, Naffrechoux E, Ultrason. Sonochem., 16, 15, 2009
  12. Schueller BS, Yang RT, Ind. Eng. Chem. Res., 40(22), 4912, 2001
  13. Zhou X, Jing G, Lv B, Zhou Z, Zhu R, Chemosphere, 160, 332, 2016
  14. Lee JY, Kim JH, Sep. Purif. Technol., 103, 8, 2013
  15. Kim HS, Kim JH, Process Biochem., 56, 163, 2017
  16. Maneechakr P, Karnjanakom S, J. Chem. Thermodyn., 106, 104, 2017
  17. Cho DN, Kim JH, Korean Chem. Eng. Res., 58(1), 127, 2020
  18. Park SH, Kim JH, Korean Chem. Eng. Res., 58(1), 113, 2020
  19. Hamdaoui O, Chiha M, Naffrechoux E, Ultrason. Sonochem., 15, 799, 2008
  20. Wu FC, Tseng RL, Juang RS, J. Colloid Interface Sci., 283(1), 49, 2005
  21. Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104, 2019
  22. Ondarts M, Reinert L, Guittonneau S, Baup S, Delpeux S, Leveque JM, Duclaux L, Chem. Eng. J., 343, 163, 2018
  23. Ji JB, Lu XH, Xu ZC, Ultrason. Sonochem., 13, 463, 2006
  24. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 24, 513, 2019
  25. Shin HS, Kim JH, Process Biochem., 51(7), 917, 2016
  26. Wolloch L, Kost J, J. Control. Release, 148, 204, 2010
  27. Wohgemuth K, Kordylla A, Ruether F, Schembecker G, Chem. Eng. Sci., 64(19), 4155, 2009
  28. Krishna R, Ellenberger J, Urseanu MI, Keil FJ, Naturwissenschaften, 87, 455, 2000