Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2229-2234, 2021
Enhanced stability of PdPtAu alloy catalyst for formic acid oxidation
n this study, the ternary catalyst, PdPtAu, was synthesized for the electrochemical formic acid oxidation reaction. The catalyst was prepared through the co-precipitation using NaBH4 as a reducing agent. The status of catalyst formation and the extent of average particle size were known by X-ray diffraction (XRD) and transmission electron microscopy (TEM). For this work, we accomplished electrochemical analyses for the PdPtAu, Pd, Pt, and Au, which defines each activity for formic acid oxidation. In durability tests, half cell and single cell tests show even better stability than the Pd and Au catalysts. Stripping tests were carried out after durability tests. Based on results, the ternary PdPtAu catalyst is less deactivated than the Pd, while the catalyst shows higher activity than the Pt. The PdPtAu catalyst represents high resistance for poisoning as compared to the Pd. We demonstrate the stability of the PdPtAu catalyst in the 3-electrode electrochemical system and single cell tests. After 2 h-operation, the deactivation degree of PdPtAu shows 27% loss of the initial current density, while Pd and Pt catalysts lost 39% and 57% of them, respectively.
[References]
  1. Ha S, Dunbar Z, Masel RI, J. Power Sources, 158(1), 129, 2006
  2. Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28, 2005
  3. Ha S, Larsen R, Zhu Y, Masel RI, Fuel Cells, 4, 337, 2004
  4. Jung WS, Han JH, Ha S, J. Power Sources, 173(1), 53, 2007
  5. Jung WS, Han J, Yoon SP, Nam SW, Lim TH, Hong SA, J. Power Sources, 196(10), 4573, 2011
  6. Uhm SH, Jeon HR, Lee JY, J. Electrochem. Sci. Technol., 1, 10, 2010
  7. Sui L, An W, Rhee CK, Hur SH, J. Electrochem. Sci. Technol., 11, 84, 2020
  8. Han SD, Choi JH, Noh SY, Park K, Yoon SK, Rhee YW, Korean J. Chem. Eng., 26(4), 1040, 2009
  9. Wang Y, Xiong Z, Xia Y, RSC Adv., 7, 40462, 2017
  10. Shi HX, Liao F, Zhu WX, Shao CR, Shao MW, Int. J. Hydrog. Energy, 45(32), 16071, 2020
  11. Lee SY, Jung N, Cho J, Park HY, Ryu J, Jang I, Kim HJ, Cho E, Park YH, Ham HC, Jang JH, Yoo SJ, ACS Catal., 4, 2402, 2014
  12. Liu D, Xie M, Wang C, Liao L, Qiu L, Ma J, Huang H, Long R, Jiang J, Xiong Y, Nano Res., 9, 1590, 2016
  13. Lu Y, Chen W, ACS Catal., 2, 84, 2012
  14. Liao H, Zhu J, Hou Y, Nanoscale, 6, 1049, 2014
  15. Hong LY, Dong QZ, Qin Q, Li HZ, Xie J, Yu G, Chen H, Int. J. Hydrog. Energy, 44(36), 19900, 2019
  16. Zhang LY, Gong YY, Wu DB, Li Z, Li Q, Zheng LW, Chen W, Appl. Surf. Sci., 469, 305, 2019
  17. Douk AS, Saravani H, Noroozifar M, J. Alloy. Compd., 739, 882, 2018
  18. Juarez-Marmolejo L, Perez-Rodriguez S, de Oca-Yemha MGM, Palomar-Pardave M, Romero-Romo M, Ezeta-Mejia A, Morales-Gil P, Martinez-Huerta MV, Lazaro MJ, Int. J. Hydrog. Energy, 44(3), 1640, 2019
  19. Jin YX, Zhao J, Li F, Jia WP, Liang DX, Chen H, Li RR, Hu JJ, Ni JM, Wu TQ, Zhong DP, Electrochim. Acta, 220, 83, 2016
  20. Ding KQ, Liu L, Cao YL, Yan XR, Wei HG, Guo ZH, Int. J. Hydrog. Energy, 39(14), 7326, 2014
  21. Caglar A, Ulas B, Cogenli MS, Yurtcan AB, Kivrak H, J. Electroanal. Chem., 850, 113402, 2019
  22. Xu C, Hao Q, Duan H, J. Mater. Chem. A, 2, 8875, 2014
  23. Li Y, Cao X, Wang L, Wang Y, Xu Q, Li Q, J. Taiwan Inst. Chem. Eng., 76, 109, 2017
  24. Choi JH, Park KW, Park IS, Kim K, Lee JS, Sung YE, J. Electrochem. Soc., 153(10), A1812, 2006
  25. Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ, J. Electrochem. Soc., 145(7), 2354, 1998
  26. Lu GQ, Crown A, Wieckowski A, J. Phys. Chem. B, 103(44), 9700, 1999
  27. Wasmus S, Tryk DA, Vielstich W, J. Electroanal. Chem., 377(1-2), 205, 1994
  28. Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, J. Phys. Chem. B, 110(27), 13393, 2006
  29. Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 44, 1 (1973).
  30. Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 45, 205 (1973).
  31. Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 44, 239 (1973).
  32. Chen YX, Heinen M, Jusys Z, Behm RJ, Angew. Chem.-Int. Edit., 45, 981, 2006
  33. Jeong KJ, Miesse CA, Choi JH, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Lee TG, J. Power Sources, 168(1), 119, 2007
  34. Ha H, Yoon S, An K, Kim HK, ACS Catal., 8, 11491, 2018
  35. Ulas B, Caglar A, Kivrak A, Aktas N, Kivrak H, Ionics, 26, 3109, 2020
  36. Jung WS, Lee WH, Oh HS, Popov BN, J. Mater. Chem. A, 8, 19833, 2020
  37. Jung WS, Popov BN, ACS Appl. Mater. Interfaces, 9, 23679, 2017
  38. Huang J, Hou H, You T, Electrochem. Commun., 11, 1281, 2009
  39. Jiang K, Zhang HX, Zou S, Cai WB, PCCP, 16, 20360, 2014
  40. Gu XJ, Lu ZH, Jiang HL, Akita T, Xu Q, J. Am. Chem. Soc., 133(31), 11822, 2011