Issue
Korean Journal of Chemical Engineering,
Vol.38, No.9, 1923-1933, 2021
Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries
Nano/micro silicon particles were achieved by high energy ball milling of silicon mesh powder as a cheap and scalable process and used to make porous silicon by acid etching. Subsequent dispersing of porous silicon with nitrogendoped carbon nanotubes and graphene oxide followed by filtration and heat treatment gives the composite of unified structures of NCNT@rGO protected porous silicon. The obtained composite was studied as an anode material for Li-ion batteries, and it delivered a high reversible capacity of 862/861mAh g-1 at 200 mA g-1 with 91% of capacity retention. Along with superior rate capability, the prepared composite exhibited 578 and 451mAh g-1 discharge capacity at 1,000 and 2,000mA g-1 after a long 300 cycles. The enhanced electrochemical performance of the composite electrode can be accredited to the highly conductive and tough matrix of NCNT@rGO blend structures, and porosity in silicon effectively controls the silicon expansion and accommodates the required buffer volume during lithiation/de-lithiation.
[References]
  1. Obrovac MN, Christensen L, Le DB, Dahnb JR, J. Electrochem. Soc., 154(9), A849, 2007
  2. Baggetto L, Niessen RAH, Notten PHL, Electrochim. Acta, 54(24), 5937, 2009
  3. Ashuri M, He Q, Shaw LL, Nanoscale, 8, 74, 2016
  4. Zuo X, Zhu J, Buschbaum PM, Cheng YJ, Nano Energy, 31, 113, 2017
  5. Sun Y, Liu N, Cui Y, Nat. Energy, 1, 16071, 2016
  6. Kasavajjula U, Wang CS, Appleby AJ, J. Power Sources, 163(2), 1003, 2007
  7. Teki R, Datta MK, Krishnan R, Parker TC, Lu TM, Kumta PN, Koratkar N, Small, 5, 2236, 2009
  8. Wu H, Cui Y, Nano Today, 7, 414, 2012
  9. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Nano Lett., 9, 3844, 2009
  10. Chen Q, Zhu R, Liu S, Wu D, Fu H, Zhu J, He H, J. Mater. Chem. A, 6, 6356, 2018
  11. Venugopal N, Kim WS, Sohn KY, Korean J. Chem. Eng., 36(9), 1536, 2019
  12. Gao P, Huang X, Zhao Y, Hu X, Cen D, Gao G, Bao Z, Mei Y, Di Z, Wu G, ACS Nano, 12, 11481, 2018
  13. Nulu A, Nulu V, Sohn KY, Sci. Adv. Mater., 12, 337, 2020
  14. Venugopal N, Kim WS, Yu T, Korean J. Chem. Eng., 33(4), 1500, 2016
  15. Patil R, Phadatare M, Blomquist N, Ortegren J, Hummelgard M, Meshram J, Dubal D, Olin H, ACS Omega, 6, 10, 2021
  16. Su M, Liu S, Wan H, Dou A, Liu K, Liu Y, Ionics, 25, 2103, 2019
  17. Nguyen VA, Kuss C, J. Electrochem. Soc, 167, 065501, 2020
  18. Xu Z, Yang J, Li H, Nuli Y, Wang J, J. Mater. Chem. A, 7, 9432, 2019
  19. Nulu A, Nulu V, Sohn KY, ChemElectroChem., 7, 4055, 2020
  20. Ashuri M, He QR, Liu YZ, Zhang K, Emani S, Sawicki MS, Shamie JS, Shaw LL, Electrochim. Acta, 215, 126, 2016
  21. Yang LY, Li HZ, Liu J, Sun ZQ, Tang SS, Lei M, Sci. Rep., 5, 10908, 2015
  22. Schulz DL, Hoey J, Smith J, Elangovan A, Wu X, Akhatov I, Payne S, Moore J, Boudjouk P, Pederson L, Xiao J, Zhang JG, Electrochem. Solid State Lett., 13(10), A143, 2010
  23. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Nano Lett., 9, 3844, 2009
  24. Chan CK, Peng H, Liu G, Nat. Nanotechnol., 3, 35, 2008
  25. Fleischauer MD, Li J, Brett MJ, J. Electrochem. Soc., 156(1), A33, 2009
  26. Xie J, Tong L, Su LW, Xu YW, Wang LB, Wang YH, J. Power Sources, 342, 529, 2017
  27. Park Y, Choi NS, Park S, Woo SH, Sim S, Jang BY, Oh SM, Park S, Cho J, Lee KT, Adv. Eng. Mater., 3, 206, 2013
  28. Yoshio M, Tsumura T, Dimov N, J. Power Sources, 146, 14, 2005
  29. Jana M, Singh RN, Materialia, 6, 100314, 2019
  30. Ashuri M, He QR, Liu YZ, Emani S, Shaw LL, Electrochim. Acta, 258, 274, 2017
  31. Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918, 2015
  32. Nulu A, Nulu V, Sohn KY, Korean J. Chem. Eng., 37(10), 1795, 2020
  33. Wang W, Epur R, Kumta PN, Electrochem. Commun., 13, 429, 2011
  34. Park KS, Min KM, Seo SD, Lee GH, Shim HW, Kim DW, Mater. Res. Bull., 48(4), 1732, 2013
  35. Xiao L, Sehlleier YH, Dobrowolny S, Mahlendorf F, Heinzel A, Schulz C, Wiggers H, Mater. Today, 4, S263, 2017
  36. Gohier A, Laik B, Kim KH, Maurice JL, Ramos JPP, Cojocaru CS, Van PT, Adv. Mater., 24, 19, 2012
  37. Cui LF, Hu L, Choi JW, Cui Y, ACS Nano, 4, 3671, 2010
  38. He X, Zhao W, Li D, Cai P, Zhuang Q, Ju Z, New J. Chem., 43, 18220, 2019
  39. Gao Y, Qiu X, Wang X, Chen X, Gu A, Yu Z, Nanotechnology, 31, 155702, 2020
  40. Ouyang Y, Zhu XB, Li F, Lai FL, Wu Y, Miao YE, Liu TX, Appl. Surf. Sci., 475, 211, 2019
  41. Su X, Wu QL, Li JC, Xiao XC, Lott A, Lu WQ, Sheldon BW, Wu J, Adv. Eng. Mater., 4, 130088, 2014
  42. Epur R, Ramanathan M, Datta MK, Hong DH, Jampani PH, Gattu B, Kumta PN, Nanoscale, 7, 3504, 2015
  43. Feng XJ, Yang J, Bie YT, Wang JL, Nuli YN, Lu W, Nanoscale, 6, 12532, 2014
  44. Tarcan R, Boer OT, Petrovai I, Leordean C, Astilean S, Botiz I, J. Mater. Chem. C., 8, 1198, 2020
  45. Botas C, Carriazo D, Zhang W, Rojo T, Singh G, Appl. Mater. Interfaces, 8, 28800, 2016
  46. Ren JG, Wang C, Wu QH, Liu X, Yang Y, He L, Zhang W, Nanoscale, 6, 3353, 2014
  47. Xiao L, Sehlleier YH, Dobrowolny S, Orthner H, Mahlendorf F, Heinzel A, Schulz C, Wiggers H, ChemElectroChem., 2, 1983, 2015
  48. Cong R, Choi JY, Song JB, Jo M, Lee H, Lee CS, Sci. Rep., 11, 1283, 2021
  49. Weidenthaler C, Nanoscale, 3, 792, 2011
  50. Paek SM, Yoo E, Honma I, Nano Lett., 9, 72, 2009
  51. Fang G, Deng X, Zou J, Zeng X, Int. J. Electrochem. Sci., 14, 1580, 2019
  52. Fang G, Deng XL, Zou JZ, Zeng XR, Electrochim. Acta, 295, 498, 2019
  53. Zhang F, Zhu G, Wang K, Qian X, Zhao Y, Luo W, Yang J, J. Mater. Chem. A., 7, 17426, 2019
  54. Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, Zhang X, ACS Appl. Mater. Interfaces, 5, 21, 2013
  55. Choi W, Shin HC, Kim JM, Choi JY, Yoon WS, J. Electrochem. Sci. Technol., 11, 1, 2020
  56. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I, Solid State Ion., 180(2-3), 222, 2009