Issue
Korean Journal of Chemical Engineering,
Vol.38, No.9, 1834-1942, 2021
Characteristics of Sr0.92Y0.08Ti1-xNixO3-δ anode for direct internal steam methane reforming in solid oxide fuel cells
Sr0.92Y0.08Ti1-xNixO3-δ (SYTN) having a perovskite structure was investigated as a direct internal steam methane reforming catalyst for use in solid oxide fuel cells. To analyze the effect of Ni-ion doping, 0, 3, and 5mol% of Ni is doped at the B-site of Sr0.92Y0.08TiO3-δ (SYT). On doping, each Ni2+ cation substitutes a Ti4+ cation in SYT to form an oxygen vacancy with two electron holes, thus acting as an oxygen-ion conductor. The number of oxygen vacancies increases with increase in Ni-ion doping. In particular, Sr0.92Y0.08Ti0.95Ni0.05O3-δ (SYTN5) shows excellent catalytic activity for steam methane reforming, yielding CH4 conversions of 0.80, 0.96, and 0.99 at 700, 800, and 900 °C, respectively, and H2-to-CO ratios of 3.38, 3.32 and 3.24 at 700, 800, and 900 °C, respectively, which are very close to the theoretical values for the steam methane reforming and water gas shift reactions. The excellent electrochemical property and high oxygen-ion conductivity of the SYTN5 anode result in good cell performance.
[References]
  1. Lyu ZW, Shi WY, Han MF, Appl. Energy, 228, 556, 2018
  2. Fuel Cell Handbook 7th Edition, U.S. Department of Energy, EG&G Technical Services Inc., West Virginia (2004).
  3. Klein JM, Henault M, Roux C, Bultel Y, Georges S, J. Power Sources, 193(1), 331, 2009
  4. Barelli L, Bidini G, Di Michele A, Gammaitoni L, Mattarelli M, Mondi F, Sisani E, Int. J. Hydrog. Energy, 44(31), 16582, 2019
  5. Su H, Hu YH, Chem. Eng. J., 402, 126235, 2020
  6. Di Giuliano A, Gallucci K, Chem. Eng. Process., 130, 240, 2018
  7. Fan L, van Biert L, Thattai AT, Verkooijen AHM, Aravind PV, Int. J. Hydrog. Energy, 40(15), 5150, 2015
  8. Matsuzaki Y, Yasuda I, J. Electrochem. Soc., 147(5), 1630, 2000
  9. Zhao Q, Wang Y, Wang YN, Li L, Zeng WQ, Li GY, Hu CW, Int. J. Hydrog. Energy, 45(28), 14281, 2020
  10. Jacobson AJ, Chem. Mater., 22, 660, 2010
  11. Fergus JW, et al., Solid oxide fuel cells: Materials properties and performance (2019).
  12. Atkinson A, Barentt S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J, Nat. Mater., 3, 17, 2004
  13. Hanna J, Lee WY, Shi Y, Ghoniem AF, Prog. Energ. Combust., 40, 74, 2014
  14. Lee SI, Vohs JM, Gorte RJ, J. Electrochem. Soc., 151(9), A1319, 2004
  15. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ, J. Electrochem. Soc., 149(3), A247, 2002
  16. Suzuki M, Sasaki H, Otoshi S, Kajimura A, Ippommatsu M, Solid State Ion., 62, 125, 1993
  17. Mahato N, Banerjee A, Gupta A, Omar S, Balani K, Prog. Mater. Sci., 72, 141, 2015
  18. Gorte RJ, Park S, Vohs JM, Wang CH, Adv. Mater., 12(19), 1465, 2000
  19. Ding H, Zhou D, Liu S, Wu W, Yang Y, Yang Y, Tao Z, Appl. Energy, 223-234, 37, 2019
  20. Bian Z, Wang Z, Jiang B, Hongmanorom P, Zhong W, Kawi S, Renew. Sust. Energ. Rev., 134, 110291, 2020
  21. Kim KH, Lim CS, Han JW, Korean J. Chem. Eng., 37(8), 1295, 2020
  22. Jeong HG, Kim DY, Sharma B, Noh JH, Lee KT, Myung JH, Korean J. Chem. Eng., 37(8), 1440, 2020
  23. Goodenough JB, Huang YH, J. Power Sources, 173(1), 1, 2007
  24. Shu LN, Sunarso J, Hashim SS, Mao JK, Zhou W, Liang FL, Int. J. Hydrog. Energy, 44(59), 31275, 2019
  25. Cao J, Su C, Ji Y, Yang G, Shao Z, J. Energy Chem., 57, 406, 2021
  26. Gwan MA, Yun JW, J. Electroceram., 40, 171, 2018
  27. Kimi JH, Yun JW, J. Electrochem. Sci. Te., 10, 335, 2019
  28. Lee JM, Yun JW, Ceram. Int., 42, 8698, 2016
  29. Kim JH, Yun JW, J. Electrochem. Sci. Te., 9, 133, 2018
  30. Park EK, Lee S, Yun JW, Appl. Surf. Sci., 429, 171, 2018
  31. Kim HS, Jeon Y, Kim JH, Jang GY, Yoon SP, Yun JW, Appl. Surf. Sci., 510, 145450, 2020
  32. Papargyriou D, Irvine JTS, Solid State Ion., 288, 120, 2016
  33. Gao Y, Chen D, Saccoccio M, Lu Z, Ciucci F, Nano Energy, 27, 499, 2016