Issue
Korean Journal of Chemical Engineering,
Vol.38, No.9, 1818-1825, 2021
Effect of hydroxyapatite-doping in Na-W-Mn/SiO2 catalysts on oxidative coupling of methane
Sodium-tungsten-manganese supported on silica (Na-W-Mn/SiO2) and hydroxyapatite (HAp) are representative catalysts for oxidative coupling of methane (OCM). In this work, the effect of the HAp doping in a Na-WMn/ SiO2 catalysts on the OCM performance was studied. To enhance the ethylene selectivity of the Na-W-Mn/SiO2 catalyst, silica supports were coated with HAp containing hydroxyl and phosphate groups as oxygen species. A series of Na-W-Mn/xHAp_SiO2 (x=1, 3, 5 and 7) catalysts with the different HAp coating cycles were prepared through the alternative soaking method, and X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the amount of HAp doping was dependent on the HAp coating cycles. In addition, the change of oxygen species upon HAp doping was examined with X-ray photoelectron spectroscopy (XPS) and oxygen temperature-programmed desorption (O2-TPD) techniques. With HAp doping, the increase of oxygen species assigned to metal oxide responsible for selective oxidation of methane to ethylene was observed in O 1s XPS spectra. In addition, weakly bound oxygen species were observed with the introduction of HAp doping in O2-TPD profiles of prepared catalysts. The influence of these oxygen species on OCM catalytic performance was evaluated at an operating temperature of 775 oC and gas hourly space velocity of 18,000ml/gcat.h. The amount of HAp doping provided reactive oxygen species for oxidative dehydrogenation of ethane, which resulted in as much as 120% increase in C2H4/C2H6 ratio over the Na-W-Mn/ 3HAp_SiO2 catalyst compared to the Na-W-Mn/SiO2 catalyst.
[References]
  1. Kathiraser Y, Wang Z, Kawi S, Environ. Sci. Technol., 47, 14510, 2013
  2. Takanabe K, J. Jap. Petrol. Inst., 55, 1, 2012
  3. Schwach P, Pan XL, Bao XH, Chem. Rev., 117(13), 8497, 2017
  4. Horn R, Schlogl R, Catal. Lett., 145(1), 23, 2015
  5. Strong PJ, Xie S, Clarke WP, Environ. Sci. Technol., 49, 4001, 2015
  6. Shtyka O, Zakrzewski M, Ciesielski R, Kedziora A, Dubkov S, Ryazanov R, Szynkowska M, Maniecki T, Korean J. Chem. Eng., 37(2), 209, 2020
  7. Lee BJ, Hur YG, Kim DH, Lee SH, Lee KY, Fuel, 253, 449, 2019
  8. Lee SH, Kang JK, Park ED, Korean J. Chem. Eng., 35(11), 2145, 2018
  9. Gambo Y, Jalil AA, Triwahyono S, Abdulrasheed AA, J. Ind. Eng. Chem., 59, 218, 2018
  10. Wu JG, Li SB, Niu JZ, Fang XP, Appl. Catal. A: Gen., 124(1), 9, 1995
  11. Ji SF, Xiao TC, Li SB, Chou LJ, Zhang B, Xu CZ, Hou RL, York APE, Green MLH, J. Catal., 220(1), 47, 2003
  12. Ji SF, Xiao TC, Li SB, Xu CZ, Hou RL, Coleman KS, Green MLH, Appl. Catal. A: Gen., 225(1-2), 271, 2002
  13. Wang JX, Chou LJ, Zhang B, Song HL, Zhao J, Yang J, Li SB, J. Mol. Catal. A-Chem., 245(1-2), 272, 2006
  14. Gordienko Y, Usmanov T, Bychkov V, Lomonosov V, Fattakhova Z, Tulenin Y, Shashkin D, Sinev M, Catal. Today, 278, 127, 2016
  15. Chua YT, Mohamed AR, Bhatia S, Appl. Catal. A: Gen., 343(1-2), 142, 2008
  16. Yunarti RT, Gu S, Choi JW, Jae J, Suh DJ, Ha JM, ACS Sustain. Chem. Eng., 5, 3667, 2017
  17. Yan Q, Wang Y, Jin Y, Chen YJ, Catal. Lett., 13, 221, 1992
  18. Malekzadeh A, Khodadadi A, Dalai A, Abedini M, J. Nat. Gas Chem., 16, 121, 2007
  19. Lee SH, Yoon KJ, Korean J. Chem. Eng., 18(2), 228, 2001
  20. Keller G, Bhasin M, J. Catal., 73, 9, 1982
  21. Lee KY, Han YC, Suh DJ, Park TJ, Stud. Surf. Sci. Catal., 119, 385, 1998
  22. Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomacker R, Appl. Catal. A: Gen., 425-426, 53, 2012
  23. Elkins TW, Hagelin-Weaver HE, Appl. Catal. A: Gen., 497, 96, 2015
  24. Uzunoglu C, Leba A, Yildirim R, Appl. Catal. A: Gen., 547, 22, 2017
  25. Fang X, Li S, Lin J, Chu Y, J. Mol. Catal., 6, 427, 1992
  26. Jiang C, Yu CJ, Fang XP, Li SB, Wang HL, J. Phys. Chem., 97, 12870, 1993
  27. Gu S, Oh HS, Choi JW, Suh DJ, Jae J, Choi J, Ha JM, Appl. Catal. A: Gen., 562, 114, 2018
  28. Park JH, Lee DW, Im SW, Lee YH, Suh DJ, Jun KW, Lee KY, Fuel, 94(1), 433, 2012
  29. Kwon D, Yang I, Sim Y, Ha JM, Jung JC, Catal. Commun., 128, 105702, 2019
  30. Lee KY, Houalla M, Hercules DM, Hall WK, J. Catal., 145(1), 223, 1994
  31. Oh SC, Lei Y, Chen HY, Liu DX, Fuel, 191, 472, 2017
  32. Kim I, Lee G, Na HB, Ha JM, Jung JC, Mol. Catal., 435, 13, 2017
  33. Sugiyama S, Hayashi H, Int. J. Mod. Phys. B, 17, 1476, 2003
  34. Suzuki K, Yumura T, Mizuguchi M, Taguchi T, Sato K, Tanaka J, Akashi M, J. Sol-Gel Sci. Technol., 21, 55, 2001
  35. Li P, Kangasniemi I, De Groot K, Kokubo T, Yli-Urpo A, J. Non-Cryst. Solids, 168, 281, 1994
  36. Palermo A, Vazquez JPH, Lee AF, Tikhov MS, Lambert RM, J. Catal., 177(2), 259, 1998
  37. Elliott J, Structure Chemistry of the Apatites and Other Calcium Orthophosphates: Hydroxyapatite and Nonstoichiometric Apatites, 18, 111 (1994).
  38. Dominguez MI, Romero-Sarria F, Centeno MA, Odriozola JA, Appl. Catal. B: Environ., 87(3-4), 245, 2009
  39. Galadima A, Muraza O, J. Ind. Eng. Chem., 37, 1, 2016
  40. Takanabe K, Iglesia E, Angew. Chem.-Int. Edit., 120, 7803, 2008