Issue
Korean Journal of Chemical Engineering,
Vol.38, No.8, 1733-1745, 2021
Effects of the content 4,4'-diaminodiphenyl methane on thermomechanical properties of shape-memory epoxy polymers
A series of thermosetting shape memory epoxy polymers (SMEPs) were prepared using the epoxy resin diglycidyl ether bisphenol A E-51 with varying content of curing agent 4,4'-diaminodiphenyl methane (DDM). The chemical, thermal and mechanical properties of the SMEPs were systematically investigated via Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic and static mechanical analysis, and thermogravimetric analysis. The results indicate that the shape-memory temperature (Tg) of the SMEPs varies within the range of 33.9 °C to 140.0 °C with DDM content increasing from 12% to 25%, and the Tg values exhibit a good linear correlation, with a correlation coefficient of more than 0.999. This indicates that SMEPs with tunable shape-memory temperatures can be realized by controlling the content of the curing agent. When the DDM content is 17-19%, the shape fixity and shape recovery ratio of the SMEPs reaches approximately 100%. In addition, the shape recovery time decreases as temperature increases. This work also highlights the effect of DDM curing agent content on the thermal, mechanical and shape-memory properties of SMEPs, and it is in favor of extending their further applications.
[References]
  1. Lendlein A, Shape-memory polymers, Springer, Berlin/Heidelberg, Germany (2010).
  2. Hu J, Shape memory polymers with novel functions: Electro-active, magnetically-active, light-adaptive and phase change materials, UK (2013).
  3. Tandon G, Baur J, McClung A, Shape memory polymers for aerospace applications: Novel synthesis, modeling, characterization and design, Pennsylvania (2015).
  4. Leng JS, Lan X, Liu YJ, Du SY, Prog. Mater. Sci., 56(7), 1077, 2011
  5. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C, Mater. Des., 33, 577, 2012
  6. Liu C, Qin H, Mather P, J. Mater. Chem., 17(16), 1543, 2007
  7. Beloshenko V, Beygelzimer YE, Borzenko A, Varyukhin V, Compos. Part A, 33, 1001, 2002
  8. Du W, Jin Y, Lai S, Shi L, Shen Y, Yang H, Compos. Part A, 128, 105686, 2020
  9. Nissenbaum A, Greenfeld I, Wagner HD, Polymer, 190, 122226, 2020
  10. Yang D, Huang W, Yu JH, Jiang JS, Zhang LY, Xie MR, Polymer, 51(22), 5100, 2010
  11. Li G, Self-healing composites: shape memory polymer based structures, John Wiley & Sons, West Sussex (2014).
  12. Ma L, Zhao J, Wang XY, Chen M, Liang YR, Wang ZW, Yu ZN, Hedden RC, Polymer, 56, 490, 2015
  13. Kolesov IS, Kratz K, Lendlein A, Radusch HJ, Polymer, 50(23), 5490, 2009
  14. Ikematsu T, Kishimoto Y, Karaushi M, Japan Patent, 02,022,355 (1990).
  15. Jeong HM, Ahn BK, Kim BK, Eur. Polym. J., 37(11), 2245, 2001
  16. Jeong HM, Song JH, Lee SY, Kim BK, J. Mater. Sci., 36(22), 5457, 2001
  17. Korley LTJ, Pate BD, Thomas EL, Hammond PT, Polymer, 47(9), 3073, 2006
  18. Zhu Y, Hu JL, Choi KF, Meng QH, Chen SJ, Yeung KW, Polym. Adv. Technol., 19, 328, 2008
  19. Zhang H, Wang HT, Zhong W, Du QG, Polymer, 50(6), 1596, 2009
  20. Ratna D, Karger-Kocsis J, J. Mater. Sci., 43(1), 254, 2008
  21. Merline JD, Nair CPR, Ninan KN, J. Macromol. Sci., Part A: Pure Appl. Chem., 45(4), 312, 2008
  22. Kumar KS, Biju R, Nair CR, React. Funct. Polym., 73(2), 421, 2013
  23. Liu Y, Du H, Liu L, Leng J, Smart Mater. Struct., 23(2), 023001, 2014
  24. Dong Y, Gong M, Huang D, Gao J, Zhou Q, Prog. Org. Coat., 136, 105232, 2019
  25. Margoy D, Gouzman I, Grossman E, Bolker A, Eliaz N, Verker R, Acta Astronaut., 178, 908, 2021
  26. Sun S, Sun G, Wu J, Smart Mater. Struct., 11(6), 970, 2002
  27. Shimamoto A, Zhao H, Azakami T, Smart Mater. Struct., 16(3), N13, 2007
  28. Kirkby EL, Michaud VJ, Manson JAE, Sottos NR, White SR, Polymer, 50(23), 5533, 2009
  29. Saeedi A, Shokrieh MM, J. Intell. Mater. Syst. Struct., 30(10), 1585, 2019
  30. Wang ZQ, Xu LD, Sun XY, Shi MF, Liu JB, Compos. Struct., 178, 311, 2017
  31. D'Elia E, Ahmed HS, Feilden E, Saiz E, Appl. Mater. Today, 15, 185, 2019
  32. Yazik MHM, Sultan MTH, Mazlan N, Talib ARA, Naveen J, Shah AUM, Safri SNA, J. Mater. Res. Technol., 9(3), 6085, 2020
  33. Yao Y, Luo Y, Xu Y, Wang B, Li J, Deng H, Lu H, Compos. Part B, 152, 1, 2018
  34. Fabrizio Q, Loredana S, Anna SE, Mater. Lett., 69, 20, 2012
  35. Liu T, Liu L, Yu M, Li Q, Zeng C, Lan X, Liu Y, Leng J, Compos. Struct., 206, 164, 2018
  36. Liu YY, Han CM, Tan HF, Du XW, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 2510, 2010
  37. Song WB, Wang LY, Wang ZD, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 529, 29, 2011
  38. Xie T, Rousseau IA, Polymer, 50(8), 1852, 2009
  39. Hagen R, Salmen L, Stenberg B, J. Polym. Sci. B: Polym. Phys., 34(12), 1997, 1996
  40. Saville B, Watson AA, Rubber Chem. Technol., 40(1), 100, 1967
  41. Karger-Kocsis J, Keki S, Polymer, 10, 34, 2018
  42. Nelson BA, King WP, Gall K, Appl. Phys. Lett., 86(10), 103108, 2005